Child's Nervous System

, Volume 27, Issue 1, pp 11–18 | Cite as

DTI assessment of the brainstem white matter tracts in pediatric BSG before and after therapy

A report from the pediatric brain tumor consortium
  • Sanjay P. Prabhu
  • Sarah Ng
  • Sridhar Vajapeyam
  • Mark W. Kieran
  • Ian F. Pollack
  • Russell Geyer
  • Daphne Haas-Kogan
  • James M. Boyett
  • Larry Kun
  • Tina Young Poussaint
Brief Communication

Abstract

Purpose

To assess changes in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values in brainstem gliomas (BSG) in children and to observe the temporal evolution of changes in the white matter tracts following therapy using diffusion tensor imaging (DTI) analysis.

Methods

Serial ADC and FA measurements were obtained in three patients with newly diagnosed BSG on two approved treatment protocols. Values were compared with a set of normative ADC, FA, and eigenvalues of age-matched children of the corticospinal, transverse pontine and medial lemniscal tracts. Fiber tracking of the tracts coursing through the brainstem was performed using standard diffusion tractography analysis.

Results

We found increased ADC values within tumor at baseline compared to age-matched controls, with subsequent drop following treatment and subsequent increase with recurrence. Correspondingly, FA values were reduced at presentation, but transiently recovered during the phase of tumor response to treatment, and finally decreased significantly during tumor progression. These changes were concordant with the tractography analysis of white matter tracts in the brainstem. Based on these results, we suggest that initial changes in ADC and FA values reflects tract infiltration by tumor, but not complete disruption, whereas tumor progression results in complete loss of anisotropy possibly due to tract disruption.

Conclusion

Serial changes in ADC and FA values and tractography data in pediatric BSG suggest initial tumor infiltration, with transient improvement on treatment and subsequent loss of tract anisotropy during tumor progression. This technique may have potential use in assessing response to treatment regimens for pediatric BSG.

Keywords

MRI Diffusion tensor imaging Brainstem glioma Pediatrics 

References

  1. 1.
    Donaldson SS, Laningham F, Fisher PG (2006) Advances toward an understanding of brainstem gliomas. J Clin Oncol 24(8):1266–1272. doi:24/8/1266 CrossRefPubMedGoogle Scholar
  2. 2.
    Chan JL, Lee SW, Fraass BA, Normolle DP, Greenberg HS, Junck LR, Gebarski SS, Sandler HM (2002) Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20(6):1635–1642CrossRefPubMedGoogle Scholar
  3. 3.
    Broniscer A, Gajjar A (2004) Supratentorial high-grade astrocytoma and diffuse brainstem glioma: two challenges for the pediatric oncologist. Oncologist 9(2):197–206CrossRefPubMedGoogle Scholar
  4. 4.
    Albright AL, Packer RJ, Zimmerman R, Rorke LB, Boyett J, Hammond GD (1993) Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery 33(6):1026–1029, discussion 1029–1030CrossRefPubMedGoogle Scholar
  5. 5.
    Stieltjes B, Kaufmann WE, van Zijl PC, Fredericksen K, Pearlson GD, Solaiyappan M, Mori S (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14(3):723–735. doi:10.1006/nimg.2001.0861 CrossRefPubMedGoogle Scholar
  6. 6.
    Field AS (2005) Diffusion tensor imaging at the crossroads: fiber tracking meets tissue characterization in brain tumors. AJNR Am J Neuroradiol 26(9):2168–2169. doi:26/9/2168 PubMedGoogle Scholar
  7. 7.
    Holodny AI, Schwartz TH, Ollenschleger M, Liu WC, Schulder M (2001) Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 95(6):1082CrossRefPubMedGoogle Scholar
  8. 8.
    Lu S, Ahn D, Johnson G, Cha S (2003) Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 24(5):937–941PubMedGoogle Scholar
  9. 9.
    Helton KJ, Phillips NS, Khan RB, Boop FA, Sanford RA, Zou P, Li CS, Langston JW, Ogg RJ (2006) Diffusion tensor imaging of tract involvement in children with pontine tumors. AJNR Am J Neuroradiol 27(4):786–793. doi:27/4/786 PubMedGoogle Scholar
  10. 10.
    Helton KJ, Weeks JK, Phillips NS, Zou P, Kun LE, Khan RB, Gajjar A, Fouladi M, Broniscer A, Boop F, Li CS, Ogg RJ (2008) Diffusion tensor imaging of brainstem tumors: axonal degeneration of motor and sensory tracts. J Neurosurg Pediatr 1(4):270–276. doi:10.3171/PED/2008/1/4/270 CrossRefPubMedGoogle Scholar
  11. 11.
    Sorensen AG, Patel S, Harmath C, Bridges S, Synnott J, Sievers A, Yoon YH, Lee EJ, Yang MC, Lewis RF, Harris GJ, Lev M, Schaefer PW, Buchbinder BR, Barest G, Yamada K, Ponzo J, Kwon HY, Gemmete J, Farkas J, Tievsky AL, Ziegler RB, Salhus MR, Weisskoff R (2001) Comparison of diameter and perimeter methods for tumor volume calculation. J Clin Oncol 19(2):551–557PubMedGoogle Scholar
  12. 12.
    Evans AC (2006) The NIH MRI study of normal brain development. Neuroimage 30(1):184–202. doi:S1053-8119(05)00710-X CrossRefPubMedGoogle Scholar
  13. 13.
    Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 25(3):356–369PubMedGoogle Scholar
  14. 14.
    Giussani C, Poliakov A, Ferri RT, Plawner LL, Browd SR, Shaw DW, Filardi TZ, Hoeppner C, Geyer JR, Olson JM, Douglas JG, Villavicencio EH, Ellenbogen RG, Ojemann JG DTI fiber tracking to differentiate demyelinating diseases from diffuse brain stem glioma. Neuroimage 52(1):217–223. doi:S1053-8119(10)00386-1
  15. 15.
    Phillips NS, Sanford RA, Helton KJ, Boop FA, Zou P, Tekautz T, Gajjar A, Ogg RJ (2005) Diffusion tensor imaging of intraaxial tumors at the cervicomedullary and pontomedullary junctions. Report of two cases. J Neurosurg 103(6 Suppl):557–562PubMedGoogle Scholar
  16. 16.
    Tropine A, Vucurevic G, Delani P, Boor S, Hopf N, Bohl J, Stoeter P (2004) Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J Magn Reson Imaging 20(6):905–912. doi:10.1002/jmri.20217 CrossRefPubMedGoogle Scholar
  17. 17.
    Witwer BP, Moftakhar R, Hasan KM, Deshmukh P, Haughton V, Field A, Arfanakis K, Noyes J, Moritz CH, Meyerand ME, Rowley HA, Alexander AL, Badie B (2002) Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97(3):568–575. doi:10.3171/jns.2002.97.3.0568 CrossRefPubMedGoogle Scholar
  18. 18.
    Chen HJ, Panigrahy A, Dhall G, Finlay JL, Nelson Jr MD, Bluml S Apparent Diffusion and Fractional Anisotropy of Diffuse Intrinsic Brain Stem Gliomas. AJNR Am J Neuroradiol. doi:ajnr.A2179
  19. 19.
    Haas-Kogan DA, Banerjee A, Kocak M, Prados MD, Geyer JR, Fouladi M, McKnight T, Poussaint TY, Broniscer A, Blaney SM, Boyett JM, Kun LE (2008) Phase I trial of tipifarnib in children with newly diagnosed intrinsic diffuse brainstem glioma. Neuro Oncol 10(3):341–347. doi:15228517-2008-004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sanjay P. Prabhu
    • 1
  • Sarah Ng
    • 1
  • Sridhar Vajapeyam
    • 1
  • Mark W. Kieran
    • 2
  • Ian F. Pollack
    • 3
  • Russell Geyer
    • 4
  • Daphne Haas-Kogan
    • 5
  • James M. Boyett
    • 6
  • Larry Kun
    • 7
  • Tina Young Poussaint
    • 1
  1. 1.Department of RadiologyHarvard Medical School, Children’s Hospital BostonBostonUSA
  2. 2.Pediatric Neuro-OncologyDana Farber Cancer CenterBostonUSA
  3. 3.Department of NeurosurgeryChildren’s Hospital of PittsburghPittsburghUSA
  4. 4.Department of Hematology/OncologySeattle Children’s HospitalSeattleUSA
  5. 5.Department of Radiation OncologyUniversity of California at San FranciscoSan FranciscoUSA
  6. 6.Department of BiostatisticsSt. Jude Children’s Research HospitalMemphisUSA
  7. 7.Department of Radiological SciencesSt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations