Child's Nervous System

, Volume 27, Issue 1, pp 87–94

IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group

  • Ian F. Pollack
  • Ronald L. Hamilton
  • Robert W. Sobol
  • Marina N. Nikiforova
  • Maureen A. Lyons-Weiler
  • William A. LaFramboise
  • Peter C. Burger
  • Daniel J. Brat
  • Marc K. Rosenblum
  • Emiko J. Holmes
  • Tianni Zhou
  • Regina I. Jakacki
  • for the Children’s Oncology Group
Original Paper



Recent studies have demonstrated a high frequency of IDH mutations in adult “secondary” malignant gliomas arising from preexisting lower grade lesions, often in young adults, but not in “primary” gliomas. Because pediatric malignant gliomas share some molecular features with adult secondary gliomas, we questioned whether a subset of these tumors also exhibited IDH mutations.

Experimental design

We examined the frequency of IDH mutations, using real-time polymerase chain reaction and sequencing analysis, in a cohort of 43 pediatric primary malignant gliomas treated on the Children’s Oncology Group ACNS0423 study. The relationship between IDH mutations and other molecular and clinical factors, and outcome, was evaluated.


IDH1 mutations were observed in 7 of 43 (16.3%) tumors; no IDH2 mutations were observed. A striking age association was apparent in that mutations were noted in 7 of 20 tumors (35%) from children ≥14 years, but in 0 of 23 (0%) younger children (p = 0.0024). No association was observed with clinical factors other than age. One-year event-free survival was 86 ± 15% in the IDH-mutated group versus 64 ± 8% in the non-mutated group (p = 0.03, one-sided logrank test). One-year overall survival was 100% in patients with mutations versus 81 ± 6.7% in those without mutations (p = 0.035, one-sided logrank test).


IDH1 mutations are common in malignant gliomas in older children, suggesting that a subset of these lesions may be biologically similar to malignant gliomas arising in younger adults and may be associated with a more favorable prognosis.


Anaplastic glioma Childhood Glioblastoma IDH 


  1. 1.
    Pollack IF (1994) Current concepts: brain tumors in children. N Engl J Med 331:1500–1507CrossRefPubMedGoogle Scholar
  2. 2.
    Pollack IF, Hamilton RL, James CD, Finkelstein SD, Burnham J, Yates AJ, Holmes EJ, Zhou T, Finlay JL (2006) Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J Neurosurg Pediatr 105:3431–3437CrossRefGoogle Scholar
  3. 3.
    Sung T, Miller DC, Hayes RL, Alonso M, Yee H, Newcomb EW (2000) Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 10:249–259CrossRefPubMedGoogle Scholar
  4. 4.
    Bredel M, Pollack IF, Hamilton RL, James CD (1999) Epidermal growth factor receptor (EGFR) expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin Cancer Res 5:1786–1792PubMedGoogle Scholar
  5. 5.
    Cheng Y, Ng H-K, Zhang S-F, Ding M, Pang JC-S, Zheng J, Poon W-S (1999) Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol 30:1284–1290CrossRefPubMedGoogle Scholar
  6. 6.
    Raffel C, Frederick L, O’Fallon JR et al (1999) Analysis of oncogene and tumor suppressor gene alterations in pediatric malignant astrocytomas reveals reduced survival for patients with PTEN mutations. Clin Cancer Res 5:4085–4090PubMedGoogle Scholar
  7. 7.
    Sure U, Ruedi D, Tachibana O et al (1997) Determination of p53 mutations, EGFR overexpression, and loss of p16 expression in pediatric glioblastomas. J Neuropathol Exp Neurol 56:782–789PubMedGoogle Scholar
  8. 8.
    Pollack IF, Finkelstein SD, Woods J, Burnham J, Holmes EJ, Hamilton RL, Yates AJ, Boyett JM, Finlay JL, Sposto R (2002) Expression of p53 and prognosis in malignant gliomas in children. N Engl J Med 346:420–427CrossRefPubMedGoogle Scholar
  9. 9.
    Pollack IF, Finkelstein SD, Burnham J, Holmes EJ, Hamilton RL, Yates AJ, Finlay J, Sposto R (2001) Age and TP53 mutation frequency in childhood malignant gliomas. Results in a multi-institutional cohort. Cancer Res 61:7404–7407PubMedGoogle Scholar
  10. 10.
    Collins VP (1999) Progression as exemplified by human astrocytic tumors. Semin Cancer Biol 9:267–276CrossRefPubMedGoogle Scholar
  11. 11.
    Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 60:417–424PubMedGoogle Scholar
  12. 12.
    von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN (1993) Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 3:19–26CrossRefGoogle Scholar
  13. 13.
    Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–224CrossRefPubMedGoogle Scholar
  14. 14.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812CrossRefPubMedGoogle Scholar
  15. 15.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773CrossRefPubMedGoogle Scholar
  16. 16.
    Ichimura K, Pearson DM, Kocialkowski S et al (2009) IDH1 mutations are present in the majority of common adult gliomas but are rare in primary glioblastomas. Neuro-Oncology 11:341–347CrossRefPubMedGoogle Scholar
  17. 17.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153CrossRefPubMedGoogle Scholar
  18. 18.
    Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1, 010 diffuse gliomas. Acta Neuropathol 118:469–474CrossRefPubMedGoogle Scholar
  19. 19.
    Korshunuv A, Meyer J, Capper D et al (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytomas from diffuse astrocytomas. Acta Neuropathol 118:401–405CrossRefGoogle Scholar
  20. 20.
    Kang MR, Kim MS, Oh JE et al (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125:353–355CrossRefPubMedGoogle Scholar
  21. 21.
    Bleeker FE, Lamba S, Leenstra S et al (2009) IDH1 mutations at residue p.R132(IDH1(R132)) occur frequently in high-grade gliomas, but not in other solid tumors. Hum Mutat 30:7–11CrossRefPubMedGoogle Scholar
  22. 22.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602CrossRefPubMedGoogle Scholar
  23. 23.
    Yan H, Bigner DD, Velculescu V, Parsons WD (2009) Mutant metabolic enzymes are at the origin of gliomas. Cancer Res 69:9157–9159CrossRefPubMedGoogle Scholar
  24. 24.
    De Carli E, Wang X, Puget S (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:2248CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao S, Lin Y, Jiang W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324:261–265CrossRefPubMedGoogle Scholar
  26. 26.
    Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744CrossRefPubMedGoogle Scholar
  27. 27.
    Antonelli M, Buttarelli FR, Arcella A et al (2010) Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas. J Neurooncol. doi:10.1007/s11060-010-0129-5, Published Online: 21 February 2010Google Scholar
  28. 28.
    Sposto R, Ertel IJ, Jenkin RDT et al (1989) The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Children’s Cancer Study Group. J Neuro-oncol 7:165–177CrossRefGoogle Scholar
  29. 29.
    Finlay JL, Boyett JM, Yates AJ et al (1995) Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. J Clin Oncol 13:112–123PubMedGoogle Scholar
  30. 30.
    Horbinski C, Kofler J, Kelly L, Murdoch GH, Nikiforova MN (2009) The diagnostic utility of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed paraffin-embedded glioma tissues. J Neuropathol Exp Neurol 68:1319–1325CrossRefPubMedGoogle Scholar
  31. 31.
    Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748PubMedGoogle Scholar
  32. 32.
    Vojtesek B, Bartek J, Midgley CA, Lane DP (1992) An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods 151:237–244CrossRefPubMedGoogle Scholar
  33. 33.
    Hsu S, Raine L, Fanger H et al (1981) Use of avidin-biotin peroxidase complex (ABC) in immunoperoxidase techniques. J Histochem Cytochem 29:577–580PubMedGoogle Scholar
  34. 34.
    Pollack IF, Boyett JM, Yates AJ, Burger PC, Gilles FH, Davis RL, Finlay JL (2003) The influence of central review on outcome associations in childhood malignant gliomas: results from the CCG-945 experience. Neuro-Oncology 5:197–207CrossRefPubMedGoogle Scholar
  35. 35.
    Kleihues P, Burger PC, Scheithauer BW (1993) Histological typing of tumours of the central nervous system. In: Sobin LH (ed) International histological classification of tumours, vol 21, 2nd edn. Springer-Verlag, Geneva, pp 11–16Google Scholar
  36. 36.
    Kalbfleisch JD, Prentice RI (1980) The statistical analysis of failure time data. John Wiley and Sons, New York, pp 163–180Google Scholar
  37. 37.
    Dixon WJ, Massey FJ (1969) Introduction to statistical analysis, 3rd edn. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ian F. Pollack
    • 1
  • Ronald L. Hamilton
    • 2
  • Robert W. Sobol
    • 3
  • Marina N. Nikiforova
    • 2
  • Maureen A. Lyons-Weiler
    • 5
  • William A. LaFramboise
    • 2
    • 5
  • Peter C. Burger
    • 6
  • Daniel J. Brat
    • 7
  • Marc K. Rosenblum
    • 8
  • Emiko J. Holmes
    • 9
  • Tianni Zhou
    • 9
  • Regina I. Jakacki
    • 4
  • for the Children’s Oncology Group
  1. 1.Department of NeurosurgeryChildren’s Hospital of Pittsburgh, University of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of Pharmacology and Chemical BiologyHillman Cancer Center, University of Pittsburgh Cancer Institute and University of Pittsburgh School of MedicinePittsburghUSA
  4. 4.Department of PediatricsChildren’s Hospital of Pittsburgh, University of Pittsburgh School of MedicinePittsburghUSA
  5. 5.The Clinical Genomics FacilityUniversity of Pittsburgh School of MedicinePittsburghUSA
  6. 6.Department of PathologyJohns Hopkins UniversityBaltimoreUSA
  7. 7.Department of PathologyEmory UniversityAtlantaUSA
  8. 8.Department of PathologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  9. 9.Statistical and Data CenterThe Children’s Oncology GroupArcadiaUSA

Personalised recommendations