Advertisement

YKL-40 promotes the progress of atherosclerosis independent of lipid metabolism in apolipoprotein E−/− mice fed a high-fat diet

  • Lei Chen
  • Jianlei ZhengEmail author
  • Qi Xue
  • Yan Zhao
Original Article
  • 40 Downloads

Abstract

YKL-40 is recently regarded as a pro-inflammatory cytokine involved in the pathological process of atherosclerosis and lipid metabolism. However, whether YKL-40 can directly influence the development of atherosclerosis and levels of lipid parameters is unknown. The aim of this study is to explore the effects of YKL-40 on atherosclerotic features, the levels of serum lipids, and biomarkers in apolipoprotein (E)-deficient (ApoE−/−) mice fed a high-fat diet. ApoE−/− mice were injected with a recombinant adenovirus expressing mouse YKL-40 or control adenovirus through the caudal vein. The levels of serum YKL-40, interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-alpha), matrix metalloproteinase-9 (MMP-9), and soluble vascular cell-adhesion molecule 1 (sVCAM-1) were measured by ELISA. Lipid metabolism parameters were measured using immunoturbidimetric assay. The size of plaque area in aorta was evaluated by Oil Red O and hematoxylin/eosin (HE) staining. The content of collagen fibers was stained with Masson, and the content of macrophages and smooth muscle cells (SMCs) in atherosclerotic lesions was investigated by immunohistochemistry. The serum levels of total cholesterol and triglycerides were similar between these two groups. Compared with the control, the levels of serum YKL-40, IL-6, TNF-alpha, MMP-9, plaque size, and macrophages in plaques were significantly increased in mice with adenovirus overexpressing YKL-40. However, the content of collagen fibers and SMCs was remarkably decreased in mice with adenovirus overexpressing YKL-40 than that in control. YKL-40 prompts the progress of atherosclerosis maybe involved with its role of pro-inflammation, but does not affect lipid metabolism in ApoE−/− mice fed a high-fat diet.

Keywords

Atherosclerosis Inflammation Lipid metabolism YKL-40 

Notes

Acknowledgements

This work was supported by Zhejiang Medical Project of Science and Technology (Project code: 2014KYA026); Natural Science Foundation of Zhejiang Province (Project code: LY17H020013).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

References

  1. 1.
    Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y, Ali F (2016) Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacology 24(1):1–10CrossRefGoogle Scholar
  2. 2.
    Greenland P, Blaha MJ, Budoff MJ, Erbel R, Watson KE (2018) Coronary calcium score and cardiovascular risk. J Am Coll Cardiol 72(4):434–447CrossRefGoogle Scholar
  3. 3.
    Usman A, Ribatti D, Sadat U, Gillard JH (2015) From Lipid retention to immune-mediate inflammation and associated angiogenesis in the pathogenesis of atherosclerosis. J Atheroscler Thromb 22(8):739–749CrossRefGoogle Scholar
  4. 4.
    Johnson JL (2017) Metalloproteinases in atherosclerosis. Eur J Pharmacol 816:93–106CrossRefGoogle Scholar
  5. 5.
    Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R (2013) Update on acute coronary syndromes: the pathologists' view. Eur Heart J 34(10):719–728CrossRefGoogle Scholar
  6. 6.
    Rathcke CN, Vestergaard H (2009) YKL-40–an emerging biomarker in cardiovascular disease and diabetes. Cardiovasc Diabetol 8:61CrossRefGoogle Scholar
  7. 7.
    Ma CY, Xu ZY, Wang SP, Peng HY, Liu F, Liu JH, Ren FX (2018) Change of inflammatory factors in patients with acute coronary syndrome. Chin Med J (Engl) 131(12):1444–1449CrossRefGoogle Scholar
  8. 8.
    Nøjgaard C, Høst NB, Christensen IJ, Poulsen SH, Egstrup K, Price PA, Johansen JS (2008) Serum levels of YKL-40 increases in patients with acute myocardial infarction. Coron Artery Dis 19(4):257–263CrossRefGoogle Scholar
  9. 9.
    Rathcke CN, Raymond I, Kistorp C, Hildebrandt P, Faber J, Vestergaard H (2010) Low grade inflammation as measured by levels of YKL-40: association with an increased overall and cardiovascular mortality rate in an elderly population. Int J Cardiol 143(1):35–42CrossRefGoogle Scholar
  10. 10.
    Zheng JL, Lu L, Hu J, Zhang RY, Zhang Q, Chen QJ, Shen WF (2010) Increased serum YKL-40 and C-reactive protein levels are associated with angiographic lesion progression in patients with coronary artery disease. Atherosclerosis 210(2):590–595CrossRefGoogle Scholar
  11. 11.
    Kjaergaard AD, Johansen JS, Bojesen SE, Nordestgaard BG (2015) Elevated plasma YKL-40, lipids and lipoproteins, and ischemic vascular disease in the general population. Stroke 46(2):329–335CrossRefGoogle Scholar
  12. 12.
    Thomsen SB, Gjesing AP, Rathcke CN, Ekstrom CT, Eiberg H, Hansen T, Pedersen O, Vestergaard H (2015) Associations of the inflammatory marker YKL-40 with measures of obesity and dyslipidaemia in individuals at high risk of type 2 diabetes. PLoS ONE 10(7):e0133672CrossRefGoogle Scholar
  13. 13.
    Thomsen SB, Rathcke CN, Skaaby T, Linneberg A, Vestergaard H (2012) The association between genetic variations of CHI3L1, levels of the encoded glycoprotein YKL-40 and the lipid profile in a Danish population. PLoS ONE 7(10):e47094CrossRefGoogle Scholar
  14. 14.
    Kologlu T, Ucar SK, Levent E, Akcay YD, Coker M, Sozmen EY (2014) Chitotriosidase as a possible marker of clinically evidenced atherosclerosis in dyslipidemic children. J Pediatr Endocrinol Metab 27(7–8):701–708Google Scholar
  15. 15.
    Tang H, Sun Y, Shi Z, Huang H, Fang Z, Chen J, Xiu Q, Li B (2013) YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration. J Immunol 190(1):438–446CrossRefGoogle Scholar
  16. 16.
    Kucur M, Isman FK, Balci C, Onal B, Hacibekiroglu M, Ozkan F, Ozkan A (2008) Serum YKL-40 levels and chitotriosidase activity as potential biomarkers in primary prostate cancer and benign prostatic hyperplasia. Urol Oncol 26(1):47–52CrossRefGoogle Scholar
  17. 17.
    Li LL, Fan JT, Li DH, Liu Y (2016) Effects of a small interfering RNA targeting YKL-40 gene on the proliferation and invasion of endometrial cancer HEC-1A cells. Int J Gynecol Cancer 26(7):1190–1195CrossRefGoogle Scholar
  18. 18.
    Faibish M, Francescone R, Bentley B, Yan W, Shao R (2011) A YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: a potential therapeutic agent in cancers. Mol Cancer Ther 10(5):742–751CrossRefGoogle Scholar
  19. 19.
    Tapia-Vieyra JV, Delgado-Coello B, Mas-Oliva J (2017) Atherosclerosis and cancer; a resemblance with far-reaching implications. Arch Med Res 48(1):12–26CrossRefGoogle Scholar
  20. 20.
    Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R (2010) Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 30(7):1282–1292CrossRefGoogle Scholar
  21. 21.
    de la Sierra A, Pintó X, Guijarro C, Miranda JL, Callejo D, Cuervo J, Subirà R, Rubio M (2015) Prevalence, treatment, and control of hypercholesterolemia in high cardiovascular risk patients: evidences from a systematic literature review in Spain. Adv Ther 32(10):944–961CrossRefGoogle Scholar
  22. 22.
    Buckley ML (1852) Ramji DP (2015) The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta 7:1498–1510Google Scholar
  23. 23.
    Masajtis-Zagajewska A, Majer J, Nowicki M (2010) Effect of moxonidine and amlodipine on serum YKL-40, plasma lipids and insulin sensitivity in insulin-resistant hypertensive patients-a randomized, crossover trial. Hypertens Res 33(4):348–353CrossRefGoogle Scholar
  24. 24.
    Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H, Kawada K, Sakai Y, Mizoguchi E, Chiba T (2012) Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene 31(26):3111–3123CrossRefGoogle Scholar
  25. 25.
    Jingjing Z, Nan Z, Wei W, Qinghe G, Weijuan W, Peng W, Xiangpeng W (2017) MicroRNA-24 modulates Staphylococcus aureus-induced macrophage polarization by suppressing CHI3L1. Inflammation 40(3):995–1005CrossRefGoogle Scholar
  26. 26.
    Gustafson B (2010) Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb 17(4):332–341CrossRefGoogle Scholar
  27. 27.
    Kleemann R, Zadelaar S, Kooistra T (2008) Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res 79(3):360–376CrossRefGoogle Scholar
  28. 28.
    Brown RA, Shantsila E, Varma C, Lip GY (2017) Current understanding of atherogenesis. Am J Med 130(3):268–282CrossRefGoogle Scholar
  29. 29.
    Kang J, Kim HL, Seo JB, Lee JY, Moon MK, Chung WY (2018) Endothelial function estimated by digital reactive hyperemia in patients with atherosclerotic risk factors or coronary artery disease. Heart Vessels 33(7):706–712CrossRefGoogle Scholar
  30. 30.
    Dimas GG, Didangelos TP, Grekas DM (2017) Matrix gelatinases in atherosclerosis and diabetic nephropathy: progress and challenges. Curr Vasc Pharmacol 15(6):557–565CrossRefGoogle Scholar
  31. 31.
    Fukuda D, Shimada K, Tanaka A, Kusuyama T, Yamashita H, Ehara S, Nakamura Y, Kawarabayashi T, Iida H, Yoshiyama M, Yoshikawa J (2006) Comparison of levels of serum matrix metalloproteinase-9 in patients with acute myocardial infarction versus unstable angina pectoris versus stable angina pectoris. Am J Cardiol 97(2):175–180CrossRefGoogle Scholar
  32. 32.
    Wu Y, Tao Z, Song C, Jia Q, Bai J, Zhi K, Qu L (2013) Overexpression of YKL-40 predicts plaque instability in carotid atherosclerosis with CagA-positive Helicobacter pylori infection. PLoS ONE 8(4):e59996CrossRefGoogle Scholar
  33. 33.
    Michelsen AE, Rathcke CN, Skjelland M, Holm S, Ranheim T, Krohg-Sorensen K, Klingvall MF, Brosstad F, Oie E, Vestergaard H, Aukrust P, Halvorsen B (2010) Increased YKL-40 expression in patients with carotid atherosclerosis. Atherosclerosis 211(2):589–595CrossRefGoogle Scholar
  34. 34.
    Ren HY, Khera A, de Lemos JA, Ayers CR, Rohatgi A (2017) Soluble endothelial cell-selective adhesion molecule and incident cardiovascular events in a multiethnic population. Am Heart J 191:55–61CrossRefGoogle Scholar
  35. 35.
    Raggi P, Genest J, Giles JT, Rayner KJ, Dwivedi G, Beanlands RS, Gupta M (2018) Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 276:98–108CrossRefGoogle Scholar
  36. 36.
    Christodoulou E, Kadoglou NPE, Stasinopoulou M, Konstandi OA, Kenoutis C, Kakazanis ZI, Rizakou A, Kostomitsopoulos N, Valsami G (2018) Crocus sativus L. aqueous extract reduces atherogenesis, increases atherosclerotic plaque stability and improves glucose control in diabetic atherosclerotic animals. Atherosclerosis 268:207–214CrossRefGoogle Scholar
  37. 37.
    Chen Q, Jin M, Yang F, Zhu J, Xiao Q, Zhang L (2013) Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediat Inflamm 2013:928315Google Scholar
  38. 38.
    Ma S, Motevalli SM, Chen J, Xu MQ, Wang Y, Feng J, Qiu Y, Han D, Fan M, Ding M, Fan L, Guo W, Liang XJ, Cao F (2018) Precise theranostic nanomedicines for inhibiting vulnerable atherosclerotic plaque progression through regulation of vascular smooth muscle cell phenotype switching. Theranostics 8(13):3693–3706CrossRefGoogle Scholar
  39. 39.
    Pidkovka NA, Cherepanova OA, Yoshida T, Alexander MR, Deaton RA, Thomas JA, Leitinger N, Owens GK (2007) Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ Res 101(8):792–801CrossRefGoogle Scholar
  40. 40.
    Tai LM, Thomas R, Marottoli FM, Koster KP, Kanekiyo T, Morris AW, Bu G (2016) The role of APOE in cerebrovascular dysfunction. Acta Neuropathol 131(5):709–723CrossRefGoogle Scholar
  41. 41.
    Zhao J, Davis MD, Martens YA, Shinohara M, Graff-Radford NR, Younkin SG, Wszolek ZK, Kanekiyo T, Bu G (2017) APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum Mol Genet 26(14):2690–2700CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PathologyZhejiang Provincial People’s HospitalHangzhouChina
  2. 2.Department of CardiologyZhejiang Provincial People’s HospitalHangzhouChina

Personalised recommendations