Myocardial T1 values in healthy volunteers measured with saturation method using adaptive recovery times for T1 mapping (SMART1Map) at 1.5 T and 3 T

  • Shunsuke Matsumoto
  • Shigeo OkudaEmail author
  • Yoshitake Yamada
  • Tatsuya Suzuki
  • Akihiro Tanimoto
  • Atsushi Nozaki
  • Masahiro Jinzaki
Short Communication


Myocardial T1 mapping is clinically valuable for assessing the myocardium, and modified look-locker inversion-recovery (MOLLI) approaches have been commonly used for measuring myocardial T1 values. To date, several other sequences have been developed for measuring myocardial T1 values, and saturation-recovery-based sequences have been shown to be less dependent on various factors, such as T2 times and magnetization transfer, than inversion-recovery techniques. Systematic differences in T1 values between different sequences have been reported; therefore, definition of the normal range of native T1 values is required before clinical usage can begin. The purpose of this study was to evaluate the reference range and sex dependency of native T1 values in the myocardium measured using one such saturation-recovery sequence, i.e., saturation method using adaptive recovery times for cardiac T1 mapping (SMART1Map). Myocardial T1 values were compared between SMART1Map and MOLLI in 24 young healthy volunteers at 1.5 T and 3 T, and differences in the T1 values between the sexes were assessed. The mean native T1 values in the myocardium were significantly longer with SMART1Map than MOLLI [1530.4 ± 49.2 vs 1222.1 ± 48.9 ms at 3 T (p < 0.001) and 1227.3 ± 41.9 ms vs 1014.8 ± 49.4 ms at 1.5 T (p < 0.001)]. A significant difference between the sexes was observed in the T1 values obtained using each sequence, excluding SMART1Map at 3 T. The SMART1Map has a potential advantage to overcome the shortcoming of MOLLI, which underestimates T1 values; however, the sex-dependent difference remains obscure using SMART1Map.


Myocardium Magnetic resonance imaging T1 mapping Saturation recovery 



We would like to thank Dr. Glenn S Slavin for developing and providing the SMART1Map sequence. This study was funded by GE Healthcare (11781177532).

Compliance with ethical standards

Conflict of interest

GE Healthcare provided a grant for conducting the volunteer study. One author (AN) is an employee of GEHC Japan. His role in this study was limited to preparing the sequence. The funder had no role in the study design, data collection, data analysis, decision to publish, or preparation of the manuscript.


  1. 1.
    Burt JR, Zimmerman SL, Kamel IR, Halushka M, Bluemke DA (2014) Myocardial T1 mapping: techniques and potential applications. Radiographics 34:377–395CrossRefGoogle Scholar
  2. 2.
    Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146CrossRefGoogle Scholar
  3. 3.
    Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB (2014) Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med 71:2082–2095CrossRefGoogle Scholar
  4. 4.
    Roujol S, Weingartner S, Foppa M, Chow K, Kawaji K, Ngo LH, Kellman P, Manning WJ, Thompson RB, Nezafat R (2014) Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 272:683–689CrossRefGoogle Scholar
  5. 5.
    Chin CW, Semple S, Malley T, White AC, Mirsadraee S, Weale PJ, Prasad S, Newby DE, Dweck MR (2014) Optimization and comparison of myocardial T1 techniques at 3 T in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 15:556–565CrossRefGoogle Scholar
  6. 6.
    Slavin GS, Food MN, Ho VB, Stainsby JA (2012) Breath-held myocardial T1 mapping using multiple single-point saturation recovery. Proceedings of the 20st Scientific Meeting of ISMRM, Salt Lake City, p 1244Google Scholar
  7. 7.
    Slavin GS, Stainsby JA (2013) True T1 mapping with SMART1Map (saturation method using adaptive recovery times for cardiac T1 mapping): a comparison with MOLLI. J Cardiovasc Magn Reson 15:3CrossRefGoogle Scholar
  8. 8.
    Deichmann R, Haase A (1992) Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson Imaging 96:608–612Google Scholar
  9. 9.
    Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Bluemke DA (2012) T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson 14:27CrossRefGoogle Scholar
  10. 10.
    Rogers T, Dabir D, Mahmoud I, Voigt T, Schaeffter T, Nagel E, Puntmann VO (2013) Standardization of T1 measurements with MOLLI in differentiation between health and disease—the ConSept study. J Cardiovasc Magn Reson 15:78CrossRefGoogle Scholar
  11. 11.
    Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, Plein S, Yu CY, Otton J, Kidambi A, McDiarmid A, Broadbent D, Higgins DM, Schnackenburg B, Foote L, Cummins C, Nagel E, Puntmann VO (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:69CrossRefGoogle Scholar
  12. 12.
    Rauhalammi SMO, Mangion K, Barrientos PH, Carrick DJA, Clerfond G, McClure J, McComb C, Radjenovic A, Berry C (2016) Native myocardial longitudinal (T1) relaxation time: regional, age, and sex associations in the healthy adult heart. J Magn Reson Imaging 44:541–548CrossRefGoogle Scholar
  13. 13.
    Weingartner S, Messner NM, Budjan J, Lossnitzer D, Mattler U, Papavassiliu T, Zollner FG, Schad LR (2016) Myocardial T1-mapping at 3 T using saturation-recovery: reference values, precision and comparison with MOLLI. J Cardiovasc Magn Reson 18:84CrossRefGoogle Scholar
  14. 14.
    Teixeira T, Hafyane T, Stikov N, Akdeniz C, Greiser A, Friedrich MG (2016) Comparison of different cardiovascular magnetic resonance sequences for native myocardial T1 mapping at 3 T. J Cardiovasc Magn Reson 18:65CrossRefGoogle Scholar
  15. 15.
    Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33:1268–1278CrossRefGoogle Scholar
  16. 16.
    Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64CrossRefGoogle Scholar
  17. 17.
    Salerno M, Janardhanan R, Jiji RS, Brooks J, Adenaw N, Mehta B, Yang Y, Antkowiak P, Kramer CM, Epstein FH (2013) Comparison of methods for determining the partition coefficient of gadolinium in the myocardium using T1 mapping. J Magn Reson Imaging 38:217–224CrossRefGoogle Scholar
  18. 18.
    Kellman P, Arai AE, Xue H (2013) T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson 15:56CrossRefGoogle Scholar
  19. 19.
    Kellman P, Herzka DA, Arai AE, Hansen MS (2013) Influence of Off-resonance in myocardial T1-mapping using SSFP based MOLLI method. J Cardiovasc Magn Reson 15:63CrossRefGoogle Scholar
  20. 20.
    Kellman P, Hansen MS (2014) T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 16:2CrossRefGoogle Scholar
  21. 21.
    Oda S, Utsunomiya D, Morita K, Nakaura T, Yuki H, Kidoh M, Hirata K, Taguchi N, Tsuda N, Shiraishi S, Namimoto T, Hirakawa K, Takashio S, Izumiya Y, Yamamuro M, Hokimoto S, Tsujita K, Ueda M, Yamashita T, Ando Y, Yamashita Y (2017) Cardiovascular magnetic resonance myocardial T1 mapping to detect and quantify cardiac involvement in familial amyloid polyneuropathy. Eur Radiol 27:4631–4638CrossRefGoogle Scholar
  22. 22.
    Morita K, Oda S, Utsunomiya D, Nakaura T, Matsubara T, Goto M, Okuaki T, Yuki H, Nagayama Y, Kidoh M, Hirata K, Iyama Y, Taguchi N, Hatemura M, Hashida M, Yamashita Y (2018) Saturation recovery myocardial T1 mapping with a composite radiofrequency pulse on a 3 T MR imaging system. Magn Reson Med Sci 17:35–41CrossRefGoogle Scholar
  23. 23.
    Liu CY, Liu YC, Wu C, Armstrong A, Volpe GJ, van der Geest RJ, Liu Y, Hundley WG, Gomes AS, Liu S, Nacif M, Bluemke DA, Lima JAC (2013) Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 62:1280–1287CrossRefGoogle Scholar
  24. 24.
    Reiter U, Reiter G, Dorr K, Greiser A, Maderthaner R, Fuchsjager M (2014) Normal diastolic and systolic myocardial T1 values at 1.5-T MR imaging: correlations and blood normalization. Radiology 271:365–372CrossRefGoogle Scholar
  25. 25.
    Rosmini S, Bulluck H, Captur G, Treibel TA, Abdel-Gadir A, Bhuva AN, Culotta V, Merghani A, Fontana M, Maestrini V, Herrey AS, Chow K, Thompson RB, Piechnik SK, Kellman P, Manisty C, Moon JC (2018) Myocardial native T1 and extracellular volume with healthy ageing and gender. Eur Heart J Cardiovasc Imaging 19:615–621CrossRefGoogle Scholar
  26. 26.
    Pagano JJ, Chow K, Paterson DI, Mikami Y, Schmidt A, Howarth A, White J, Friedrich MG, Oudit GY, Ezekowitz J, Dyck J, Thompson RB (2018) Effects of age, gender, and risk-factors for heart failure on native myocardial T1 and extracellular volume fraction using the SASHA sequence at 1.5 T. J Magn Reson Imaging 48:1307–1317CrossRefGoogle Scholar
  27. 27.
    Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NA, Banerjee R, Holloway C, Hofman MB, Sado DM, Maestrini V, White SK, Lazdam M, Karamitsos T, Moon JC, Neubauer S, Leeson P, Robson MD (2013) Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 15:13CrossRefGoogle Scholar
  28. 28.
    Roy C, Slimani A, de Meester C, Amzulescu M, Pasquet A, Vancraeynest D, Vanoverschelde JL, Pouleur AC, Gerber BL (2017) Age and sex corrected normal reference values of T1, T2 T2* and ECV in healthy subjects at 3 T CMR. J Cardiovasc Magn Reson 19:72CrossRefGoogle Scholar
  29. 29.
    Chow K, Kellman P, Spottiswoode BS, Nielles-Vallespin S, Thompson RB (2015) Optimized saturation pulse trains for SASHA T1 mapping at 3. J Cardiovasc Magn Reson 17(Suppl 1):W20CrossRefGoogle Scholar
  30. 30.
    von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, Wassmuth R, Greiser A, Schwenke C, Niendorf T, Schulz-Menger J (2013) Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 15:53CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of RadiologyKeio University School of MedicineTokyoJapan
  2. 2.MR Applications and WorkflowGE Healthcare JapanTokyoJapan

Personalised recommendations