Advertisement

High shear stress on the coronary arterial wall is related to computed tomography-derived high-risk plaque: a three-dimensional computed tomography and color-coded tissue-characterizing intravascular ultrasonography study

  • Nobuhiro Murata
  • Takafumi HiroEmail author
  • Tadateru Takayama
  • Suguru Migita
  • Tomoyuki Morikawa
  • Takehiro Tamaki
  • Takashi Mineki
  • Keisuke Kojima
  • Naotaka Akutsu
  • Mitsumasa Sudo
  • Daisuke Kitano
  • Daisuke Fukamachi
  • Atsushi Hirayama
  • Yasuo Okumura
Original Article

Abstract

Low wall shear stress (WSS) is associated with plaque formation. However, the relationship between WSS and coronary plaque vulnerability remains unclear. Therefore, this study aimed to clarify the in vivo relationship between luminal WSS derived from three-dimensional (3D) computed tomography (CT) and plaque vulnerability within the coronary artery. Forty-three consecutive patients with ischemic heart disease and coronary stenotic lesions were enrolled and underwent coronary angiography and color-coded intravascular ultrasonography (iMap™) followed by multi-slice coronary CT angiography. CT-derived high-risk plaque was defined by specific CT characteristics, including low CT intensity (< 30 HU) and positive remodeling. The Student’s t test, Mann–Whitney U test, χ2 test, repeated measures analysis of variance, and logistic and multiple regression were used for statistical analyses. CT-derived high-risk plaque (n = 15) had higher values of maximum and average shear stress than CT-derived stable plaque (474 ± 453 vs. 158 ± 138 Pa, p = 0.018; 4.2 ± 3.1 vs. 1.6 ± 1.2 Pa, p = 0.007, respectively). Compared with patients with CT-derived stable plaque, those with CT-derived high-risk plaque had a higher prevalence of necrotic and lipidic characteristics (44 ± 13 vs. 31 ± 11%, p = 0.001) based on iMap™. Multivariate logistic regression analysis showed that the average WSS and necrotic plus lipidic content were independent determinants of CT-derived high-risk plaque (average WSS: odds ratio 2.996, p = 0.014; necrotic plus lipidic content: odds ratio 1.306, p = 0.036). Our findings suggested that CT-derived high-risk plaque may coexist with high shear stress on the plaque surface.

Keywords

Shear stress 3D-CT IVUS Atherosclerosis CT-derived high-risk plaque 

Notes

Acknowledgements

We sincerely thank all staff of the catheterization unit at Nihon University Itabashi Hospital.

Compliance with ethical standards

Conflict of interest

The authors declare no financial relationships or conflicts of interest regarding the content herein, with the exception of Dr. Hiro, Dr. Hirayama and Dr. Okumura who also work for a department endowed by Boston-Scientific Japan Co., Ltd. at Nihon University School of Medicine. This work was partly supported by a Grant-in-Aid for Scientific Research (JSPS KAKENHI Grant Number 16K09481) of the Ministry of Education, Japan.

References

  1. 1.
    Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393CrossRefGoogle Scholar
  2. 2.
    Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, Takahashi A, Katsuki T, Nakamura S, Namiki A, Hirohata A, Matsumura T, Yamazaki S, Yokoi H, Tanaka S, Otsuji S, Yoshimachi F, Honye J, Harwood D, Reitman M, Coskun AU, Papafaklis MI, Feldman CL, Investigators PREDICTION (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126:172–181CrossRefGoogle Scholar
  3. 3.
    Koskinas KC, Feldman CL, Chatzizisis YS, Coskun AU, Jonas M, Maynard C, Baker AB, Papafaklis MI, Edelman ER, Stone PH (2010) Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study. Circulation 121:2092–2101CrossRefGoogle Scholar
  4. 4.
    Stone PH, Maehara A, Coskun AU, Maynard CC, Zaromytidou M, Siasos G, Andreou I, Fotiadis D, Stefanou K, Papafaklis M, Michalis L, Lansky AJ, Mintz GS, Serruys PW, Feldman CL, Stone GW (2017) Role of low endothelial shear stress and plaque characteristics in the prediction of nonculprit major adverse cardiac events: the PROSPECT Study. JACC Cardiovasc Imaging 11:462–471CrossRefGoogle Scholar
  5. 5.
    Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042CrossRefGoogle Scholar
  6. 6.
    Fukumoto Y, Hiro T, Fujii T, Hashimoto G, Fujimura T, Yamada J, Okamura T, Matsuzaki M (2008) Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J Am Coll Cardiol 51:645–650CrossRefGoogle Scholar
  7. 7.
    Li ZY, Taviani V, Tang T, Sadat U, Young V, Patterson A, Graves M, Gillard JH (2009) The mechanical triggers of plaque rupture: shear stress vs pressure gradient. Br J Radiol 82(Spec No 1):S39–S45CrossRefGoogle Scholar
  8. 8.
    Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326CrossRefGoogle Scholar
  9. 9.
    Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Wong ND, Virmani R, Kondo T, Ozaki Y, Narula J (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54:49–57CrossRefGoogle Scholar
  10. 10.
    Sathyanarayana S, Carlier S, Li W, Thomas L (2009) Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals. EuroIntervention 5:133–139CrossRefGoogle Scholar
  11. 11.
    Kawasaki M, Takatsu H, Noda T, Sano K, Ito Y, Hayakawa K, Tsuchiya K, Arai M, Nishigaki K, Takemura G, Minatoguchi S, Fujiwara T, Fujiwara H (2002) In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation 105:2487–2492CrossRefGoogle Scholar
  12. 12.
    Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely JF, Murata A, Takeda Y, Ito T, Ehara M, Matsubara T, Terashima M, Suzuki T (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 47:2405–2412CrossRefGoogle Scholar
  13. 13.
    Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, Cury RC, Abbara S, Joneidi-Jafari H, Achenbach S, Brady TJ (2006) Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 47:1655–1662CrossRefGoogle Scholar
  14. 14.
    Carrascosa PM, Capuñay CM, Garcia-Merletti P, Carrascosa J, Garcia MF (2006) Characterization of coronary atherosclerotic plaques by multidetector computed tomography. Am J Cardiol 97:598–602CrossRefGoogle Scholar
  15. 15.
    Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ (1997) Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 17:2061–2065CrossRefGoogle Scholar
  16. 16.
    Ilegbusi OJ, Hu Z, Nesto R, Waxman S, Cyganski D, Kilian J, Stone PH (1999) Feldman CL. Determination of blood flow and endothelial shear stress in human coronary artery in vivo. J Invasive Cardiol 11:667–674Google Scholar
  17. 17.
    Friedman MH, Bargeron CB, Duncan DD, Hutchins GM, Mark FF (1992) Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. J Biomech Eng 114:317–320CrossRefGoogle Scholar
  18. 18.
    Krijger JK, Heethaar RM, Hillen B, Hoogstraten HW, Ravensbergen J (1992) Computation of steady three-dimensional flow in a model of the basilar artery. J Biomech. 25:1451–1465CrossRefGoogle Scholar
  19. 19.
    Mittal N, Zhou Y, Linares C, Ung S, Kaimovitz B, Molloi S, Kassab GS (2005) Analysis of blood flow in the entire coronary arterial tree. Am J Physiol Heart Circ Physiol 289:H439–H446CrossRefGoogle Scholar
  20. 20.
    Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW, PROSPECT Investigators (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235CrossRefGoogle Scholar
  21. 21.
    Kozuki A, Shinke T, Otake H, Shite J, Matsumoto D, Kawamori H, Nakagawa M, Nagoshi R, Hariki H, Inoue T, Nishio R, Hirata K (2013) Feasibility of a novel radiofrequency signal analysis for in-vivo plaque characterization in humans: comparison of plaque components between patients with and without acute coronary syndrome. Int J Cardiol 167:1591–1596CrossRefGoogle Scholar
  22. 22.
    Motoyama S, Ito H, Sarai M, Kondo T, Kawai H, Nagahara Y, Harigaya H, Kan S, Anno H, Takahashi H, Naruse H, Ishii J, Hecht H, Shaw LJ, Ozaki Y, Narula J (2015) Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J Am Coll Cardiol 66:337–346CrossRefGoogle Scholar
  23. 23.
    Nicholls SJ, Hsu A, Wolski K, Hu B, Bayturan O, Lavoie A, Uno K, Tuzcu EM, Nissen SE (2010) Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol 55:2399–2407CrossRefGoogle Scholar
  24. 24.
    Sudo M, Hiro T, Takayama T, Iida K, Nishida T, Fukamachi D, Kawano T, Higuchi Y, Hirayama A (2016) Tissue characteristics of non-culprit plaque in patients with acute coronary syndrome vs. stable angina: a color-coded intravascular ultrasound study Cardiovasc Interv Ther 31:42–50.Google Scholar
  25. 25.
    Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695CrossRefGoogle Scholar
  26. 26.
    Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardeña G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230–239CrossRefGoogle Scholar
  27. 27.
    VanderLaan PA, Reardon CA, Getz GS (2004) Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol 24:12–22CrossRefGoogle Scholar
  28. 28.
    Tang D, Teng Z, Canton G, Yang C, Ferguson M, Huang X, Zheng J, Woodard PK, Yuan C (2009) Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study. Stroke 40:3258–3263CrossRefGoogle Scholar
  29. 29.
    Krams R, Cheng C, Helderman F, Verheye S, van Damme LC, Mousavi Gourabi B, Tempel D, Segers D, de Feyter P, Pasterkamp G, De Klein D, de Crom R, van der Steen AF, Serruys PW (2006) Shear stress is associated with markers of plaque vulnerability and MMP-9 activity. EuroIntervention 2:250–256Google Scholar
  30. 30.
    White SJ, Hayes EM, Lehoux S, Jeremy JY, Horrevoets AJ, Newby AC (2011) Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J Cell Physiol 226:2841–2848CrossRefGoogle Scholar
  31. 31.
    Kumar A, Thompson EW, Lefieux A, Molony DS, Davis EL, Chand N, Fournier S, Lee HS, Suh J, Sato K, Ko YA, Molloy D, Chandran K, Hosseini H, Gupta S, Milkas A, Gogas B, Chang HJ, Min JK, Fearon WF, Veneziani A, Giddens DP, King SB 3rd, De Bruyne B, Samady H (2018) High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J Am Coll Cardiol 16:1926–1935CrossRefGoogle Scholar
  32. 32.
    Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM (2001) Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis. J Am Coll Cardiol 38:297–306CrossRefGoogle Scholar
  33. 33.
    Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang K, Ye Z, Liu W, Gregersen H, Wang G (2016) High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater 3:257–267CrossRefGoogle Scholar
  34. 34.
    Bot I, de Jager SC, Zernecke A, Lindstedt KA, van Berkel TJ, Weber C, Biessen EA (2007) Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation 115:2516–2525CrossRefGoogle Scholar
  35. 35.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061CrossRefGoogle Scholar
  36. 36.
    Tanaka K, Nagata D, Hirata Y, Tabata Y, Nagai R, Sata M (2011) Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipoprotein E-deficient mice. Atherosclerosis 215:366–373CrossRefGoogle Scholar
  37. 37.
    Choi YS, Choi HJ, Min JK, Pyun BJ, Maeng YS, Park H, Kim J, Kim YM, Kwon YG (2009) Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood 114:3117–3126CrossRefGoogle Scholar
  38. 38.
    Mattsson EJ, Kohler TR, Vergel SM, Clowes AW (1997) Increased blood flow induces regression of intimal hyperplasia. Arterioscler Thromb Vasc Biol 17:2245–2249CrossRefGoogle Scholar
  39. 39.
    Rodriguez-Granillo GA, Serruys PW, Garcia-Garcia HM, Aoki J, Valgimigli M, van Mieghem CA, McFadden E, de Jaegere PP, de Feyter P (2006) Coronary artery remodelling is related to plaque composition. Heart 92:388–391CrossRefGoogle Scholar
  40. 40.
    Wentzel JJ, Janssen E, Vos J, Schuurbiers JC, Krams R, Serruys PW, de Feyter PJ, Slager CJ (2003) Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling. Circulation 108:17–23CrossRefGoogle Scholar
  41. 41.
    Dumont O, Loufrani L, Henrion D (2007) Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler Thromb Vasc Biol 27:317–324CrossRefGoogle Scholar
  42. 42.
    Yamamoto K, Ando J (2011) New molecular mechanisms for cardiovascular disease: blood flow sensing mechanism in vascular endothelial cells. J Pharmacol Sci 116:323–331CrossRefGoogle Scholar
  43. 43.
    Zhang J, Nie L, Razavian M, Ahmed M, Dobrucki LW, Asadi A, Edwards DS, Azure M, Sinusas AJ, Sadeghi MM (2008) Molecular imaging of activated matrix metalloproteinases in vascular remodeling. Circulation 118:1953–1960CrossRefGoogle Scholar
  44. 44.
    Fitzgerald TN, Shepherd BR, Asada H, Teso D, Muto A, Fancher T, Pimiento JM, Maloney SP, Dardik A (2008) Laminar shear stress stimulates vascular smooth muscle cell apoptosis via the Akt pathway. J Cell Physiol 216:389–395CrossRefGoogle Scholar
  45. 45.
    Chen HC, Patel V, Wiek J, Rassam SM, Kohner EM (1994) Vessel diameter changes during the cardiac cycle. Eye (Lond) 8:97–103CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Nobuhiro Murata
    • 1
  • Takafumi Hiro
    • 1
    Email author
  • Tadateru Takayama
    • 1
  • Suguru Migita
    • 1
  • Tomoyuki Morikawa
    • 1
  • Takehiro Tamaki
    • 1
  • Takashi Mineki
    • 1
  • Keisuke Kojima
    • 1
  • Naotaka Akutsu
    • 1
  • Mitsumasa Sudo
    • 1
  • Daisuke Kitano
    • 1
  • Daisuke Fukamachi
    • 1
  • Atsushi Hirayama
    • 1
  • Yasuo Okumura
    • 1
  1. 1.Division of Cardiology, Department of MedicineNihon University School of MedicineTokyoJapan

Personalised recommendations