Atrial septal defect and patent foramen ovale: early and long-term effects on endothelial function after percutaneous occlusion procedure

  • Pietro ScicchitanoEmail author
  • Michele Gesualdo
  • Francesca Cortese
  • Tommaso Acquaviva
  • Emanuela de Cillis
  • Alessandro Santo Bortone
  • Marco Matteo Ciccone
Original Article


Percutaneous closure of atrial septal defect (ASD)/patent foramen ovale (PFO) can influence systemic hemodynamics. The aim of this research was to evaluate the influence of the closure procedure on morphological and functional characteristics of systemic vascular walls. Fourteen ASD (mean age 40 ± 16 years) and 14 PFO (45 ± 8 years) patients were enrolled in this retrospective study. All underwent percutaneous closure procedure; physical, clinical and biochemical evaluations; echocardiography; carotid evaluation; and brachial artery flow-mediated vasodilatation (FMD). All the evaluations were performed at the time of enrollment, 24 h post-procedure, at 1–6–12-month follow-up. FMD at enrollment was higher in PFO patients as compared to ASD (8.5% [7.6–10.7%] versus 6.5% [5.6–7.6%], p < 0.0001). FMD values in ASD patients significantly increased during follow-up (enrollment: 6.5% [5.6–7.6%], 12-month follow-up: 8.8% [7.2–10.3%], p < 0.01). PFO patients showed reduced FMD values 24 h after the procedure (enrollment: 8.5% [7.6–10.7%], 24 h post-procedure: 7% [6.3–9%], p < 0.001), while recovering endothelial function during follow-up period to baseline values (FMD at 12-month follow-up: 8.2% [7.6–10.5%]). At one-year follow-up, FMD remained inversely related to systolic pulmonary arterial pressure and right and left atrial/ventricle chambers dimensions (RV proximal diameter efflux tract, right atrium [RA] longitudinal diameter, RA transverse diameter, RA area, left ventricle [LV] end-diastolic diameter, left atrium [LA] anteroposterior diameter, LA area; p < 0.01) in ASD patients. Endothelial function improved after percutaneous closure of ASD, while remaining stable after PFO closure. Therefore, ASD patients seem to improve their cardiovascular risk profile after percutaneous closure of their defect.


Atrial septal defect Patent foramen ovale Percutaneous closure procedure Endothelial function 



This research received no grant from any funding agency in the public, commercial or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

380_2019_1385_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 70 kb)


  1. 1.
    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126CrossRefGoogle Scholar
  2. 2.
    GBD (2016) Disease and Injury Incidence and Prevalence Collaborators (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1211–1259Google Scholar
  3. 3.
    Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corrà U, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FD, Løchen ML, Löllgen H, Marques-Vidal P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WM; Additional Contributor: Simone Binno (Italy); Document Reviewers:, De Backer G, Roffi M, Aboyans V, Bachl N, Bueno H, Carerj S, Cho L, Cox J, De Sutter J, Egidi G, Fisher M, Fitzsimons D, Franco OH, Guenoun M, Jennings C, Jug B, Kirchhof P, Kotseva K, Lip GY, Mach F, Mancia G, Bermudo FM, Mezzani A, Niessner A, Ponikowski P, Rauch B, Rydén L, Stauder A, Turc G, Wiklund O, Windecker S, Zamorano JL (2016) European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European association for cardiovascular prevention and rehabilitation (EACPR). Eur J Prev Cardiol 23:NP1–NP96Google Scholar
  4. 4.
    Vapaatalo H, Mervaala E (2001) Clinically important factors influencing endothelial function. Med Sci Monit 7:1075–1085Google Scholar
  5. 5.
    Ciccone MM, Principi M, Ierardi E, Di Leo A, Ricci G, Carbonara S, Gesualdo M, Devito F, Zito A, Cortese F, Scicchitano P (2015) Inflammatory bowel disease, liver diseases and endothelial function: is there a linkage? J Cardiovasc Med 16:11–21CrossRefGoogle Scholar
  6. 6.
    Leppert M, Poisson SN, Carroll JD (2016) Atrial septal defects and cardioembolic strokes. Cardiol Clin 34:225–230CrossRefGoogle Scholar
  7. 7.
    Jalal Z, Hascoet S, Baruteau AE, Iriart X, Kreitmann B, Boudjemline Y, Thambo JB (2016) Long-term complications after transcatheter atrial septal defect closure: a review of the medical literature. Can J Cardiol 32:1315.e11–1315.e18CrossRefGoogle Scholar
  8. 8.
    Hara H, Virmani R, Ladich E, Mackey-Bojack S, Titus J, Reisman M, Gray W, Nakamura M, Mooney M, Poulose A, Schwartz RS (2005) Patent foramen ovale: current pathology, pathophysiology, and clinical status. J Am Coll Cardiol 46:1768–1776CrossRefGoogle Scholar
  9. 9.
    Mojadidi MK, Christia P, Salamon J, Liebelt J, Zaman T, Gevorgyan R, Nezami N, Mojaddedi S, Elgendy IY, Tobis JM, Faillace R (2015) Patent foramen ovale: unanswered questions. Eur J Intern Med 26:743–751CrossRefGoogle Scholar
  10. 10.
    Baeyens N, Schwartz MA (2016) Biomechanics of vascular mechanosensation and remodeling. Mol Biol Cell 27:7–11CrossRefGoogle Scholar
  11. 11.
    Kang H, Cancel LM, Tarbell JM (2014) Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers. Atherosclerosis 233:682–690CrossRefGoogle Scholar
  12. 12.
    Humpl T, Campbell R, Stephens D, Van Arsdell G, Benson LN, Holtby HM, Slutsky AS, Adatia I (2002) Levels of exhaled nitric oxide before and after surgical and transcatheter device closure of atrial septal defects in children. J Thorac Cardiovasc Surg 124:806–810CrossRefGoogle Scholar
  13. 13.
    Werner N, Wassmann S, Ahlers P, Schiegl T, Kosiol S, Link A, Walenta K, Nickenig G (2007) Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol 102:565–571CrossRefGoogle Scholar
  14. 14.
    Rodés-Cabau J, Noël M, Marrero A, Rivest D, Mackey A, Houde C, Bédard E, Larose E, Verreault S, Peticlerc M, Pibarot P, Bogaty P, Bertrand OF (2009) Atherosclerotic burden findings in young cryptogenic stroke patients with and without a patent foramen ovale. Stroke 40:419–425CrossRefGoogle Scholar
  15. 15.
    Wu ET, Akagi T, Taniguchi M, Maruo T, Sakuragi S, Otsuki S, Okamoto Y, Sano S (2007) Differences in right and left ventricular remodeling after transcatheter closure of atrial septal defect among adults. Catheter Cardiovasc Interv 69:866–871CrossRefGoogle Scholar
  16. 16.
    Pascotto M, Santoro G, Cerrato F, Caputo S, Bigazzi MC, Iacono C, Carrozza M, Russo MG, Caianiello G, Calabrò R (2006) Time-course of cardiac remodeling following transcatheter closure of atrial septal defect. Int J Cardiol 112:348–352CrossRefGoogle Scholar
  17. 17.
    Giardini A, Donti A, Specchia S, Formigari R, Oppido G, Picchio FM (2008) Long-term impact of transcatheter atrial septal defect closure in adults on cardiac function and exercise capacity. Int J Cardiol 124:179–182CrossRefGoogle Scholar
  18. 18.
    Eroglu E, Cakal SD, Cakal B, Dundar C, Alici G, Ozkan B, Yazicioglu MV, Tigen K, Esen AM (2013) Time course of right ventricular remodeling after percutaneous atrial septal defect closure: assessment of regional deformation properties with two-dimensional strain and strain rate imaging. Echocardiography 30:324–330CrossRefGoogle Scholar
  19. 19.
    Rigatelli G, Dell’avvocata F, Cardaioli P, Braggion G, Giordan M, Mazza A, Fraccaro C, Chinaglia M, Chen JP (2012) Long-term results of the amplatzer cribriform occluder for patent foramen ovale with associated atrial septal aneurysm: impact on occlusion rate and left atrial functional remodelling. Am J Cardiovasc Dis 2:68–74Google Scholar
  20. 20.
    Vitarelli A, Mangieri E, Capotosto L, Tanzilli G, D’Angeli I, Toni D, Azzano A, Ricci S, Placanica A, Rinaldi E, Mukred K, Placanica G, Ashurov R (2014) Echocardiographic findings in simple and complex patent foramen ovale before and after transcatheter closure. Eur Heart J Cardiovasc Imaging 15:1377–1385CrossRefGoogle Scholar
  21. 21.
    Yared K, Baggish AL, Solis J, Durst R, Passeri JJ, Palacios IF, Picard MH (2009) Echocardiographic assessment of percutaneous patent foramen ovale and atrial septal defect closure complications. Circ Cardiovasc Imaging 2:141–149CrossRefGoogle Scholar
  22. 22.
    Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N, Gatzoulis MA, Gohlke-Baerwolf C, Kaemmerer H, Kilner P, Meijboom F, Mulder BJ, Oechslin E, Oliver JM, Serraf A, Szatmari A, Thaulow E, Vouhe PR, Walma E; Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC); Association for European Paediatric Cardiology (AEPC); ESC Committee for Practice Guidelines (CPG) (2010) ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 31:2915–2957Google Scholar
  23. 23.
    Pristipino C, Anzola GP, Ballerini L, Bartorelli A, Cecconi M, Chessa M, Donti A, Gaspardone A, Neri G, Onorato E, Palareti G, Rakar S, Rigatelli G, Santoro G, Toni D, Ussia GP, Violini R; Italian Society of Invasive Cardiology (SICI-GISE); Italian Stroke Association (ISA-AIS); Italian Association of Hospital Neurologists, Neuroradiologists, Neurosurgeons (SNO); Congenital Heart Disease Study Group of Italian Society Of Cardiology; Italian Association Of Hospital Cardiologists (ANMCO); Italian Society Of Pediatric Cardiology (SICP); Italian Society of Cardiovascular Echography (SIEC); Italian Society of Hemostasis and Thrombosis (SISET) (2013) Management of patients with patent foramen ovale and cryptogenic stroke: a collaborative, multidisciplinary, position paper. Catheter Cardiovasc Interv 82:E38–E51CrossRefGoogle Scholar
  24. 24.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270CrossRefGoogle Scholar
  25. 25.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713CrossRefGoogle Scholar
  26. 26.
    Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R (1986) Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 74:1399–1406CrossRefGoogle Scholar
  27. 27.
    Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Fatar M, Hernandez Hernandez R, Jaff M, Kownator S, Prati P, Rundek T, Sitzer M, Schminke U, Tardif JC, Taylor A, Vicaut E, Woo KS, Zannad F, Zureik M (2007) Mannheim carotid intima-media thickness consensus (2004–2006). In: An update on behalf of the advisory board of the 3rd and 4th watching the risk symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 23:75–80Google Scholar
  28. 28.
    Gemignani V, Faita F, Ghiadoni L, Poggianti E, Demi M (2007) A system for real-time measurement of the brachial artery diameter in B-mode ultrasound images. IEEE Trans Med Imaging 26:393–404CrossRefGoogle Scholar
  29. 29.
    Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R, International Brachial Artery Reactivity Task Force (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39:257–265CrossRefGoogle Scholar
  30. 30.
    Olivares-Reyes A, Chan S, Lazar EJ, Bandlamudi K, Narla V, Ong K (1997) Atrial septal aneurysm: a new classification in two hundred five adults. J Am Soc Echocardiogr 10:644–656CrossRefGoogle Scholar
  31. 31.
    Fleiss JL, Cohen J (1973) The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Meas 33:613–619CrossRefGoogle Scholar
  32. 32.
    Jaffre A, Guidolin B, Ruidavets JB, Nasr N, Larrue V (2017) Non-obstructive carotid atherosclerosis and patent foramen ovale in young adults with cryptogenic stroke. Eur J Neurol 24:663–666CrossRefGoogle Scholar
  33. 33.
    Fok H, Jiang B, Chowienczyk P, Clapp B (2015) Microbubbles shunting via a patent foramen ovale impair endothelial function. JRSM Cardiovasc Dis 4:2048004015601564Google Scholar
  34. 34.
    Lantz M, Kostulas K, Settergren M, Sjöstrand C (2017) Impaired endothelial function in patients with cryptogenic stroke and patent foramen ovale is not affected by closure. J Interv Cardiol 30:242–248CrossRefGoogle Scholar
  35. 35.
    Lin ZB, Ci HB, Li Y, Cheng TP, Liu DH, Wang YS, Xu J, Yuan HX, Li HM, Chen J, Zhou L, Wang ZP, Zhang X, Ou ZJ, Ou JS (2017) Endothelial microparticles are increased in congenital heart diseases and contribute to endothelial dysfunction. J Transl Med 15:4CrossRefGoogle Scholar
  36. 36.
    Kaya MG, Elcik D, Calapkorur B, Lam YY (2016) Enhanced platelet activity in atrial septal defect. J Cardiovasc Med 17:870–874CrossRefGoogle Scholar
  37. 37.
    Xu MG, Meng XC, Li BN, Liu C (2013) The circulating level of endothelial progenitor cells after transcatheter closure of congenital heart disease in children. Pediatr Cardiol 34:1344–1349CrossRefGoogle Scholar
  38. 38.
    Fu L, Hu XX, Lin ZB, Chang FJ, Ou ZJ, Wang ZP, Ou JS (2015) Circulating microparticles from patients with valvular heart disease and cardiac surgery inhibit endothelium-dependent vasodilation. J Thorac Cardiovasc Surg 150:666–672CrossRefGoogle Scholar
  39. 39.
    Hare JM, Nguyen GC, Massaro AF, Drazen JM, Stevenson LW, Colucci WS, Fang JC, Johnson W, Givertz MM, Lucas C (2002) Exhaled nitric oxide: a marker of pulmonary hemodynamics in heart failure. J Am Coll Cardiol 40:1114–1119CrossRefGoogle Scholar
  40. 40.
    Xu BJ, Chen J, Chen X, Liu XW, Fang S, Shu Q, Hu L, Shi SS, Du LZ, Tan LH (2015) High shear stress-induced pulmonary hypertension alleviated by endothelial progenitor cells independent of autophagy. World J Pediatr 11:171–176CrossRefGoogle Scholar
  41. 41.
    Zhou J, Li YS, Chien S (2014) Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol 34:2191–2198CrossRefGoogle Scholar
  42. 42.
    Takata M, Amiya E, Watanabe M, Ozeki A, Watanabe A, Kawarasaki S, Nakao T, Hosoya Y, Uno K, Saito A, Murasawa T, Ono M, Nagai R, Komuro I (2015) Brachial artery diameter has a predictive value in the improvement of flow-mediated dilation after aortic valve replacement for aortic stenosis. Heart Vessels 30:218–226CrossRefGoogle Scholar
  43. 43.
    Santini L, Capria A, Di Molfetta A, Mahfouz K, Panattoni G, Minni V, Sergi D, Forleo GB, Romeo F (2013) Endothelial dysfunction is a marker of systemic response to the cardiac resynchronization therapy in heart failure. J Card Fail 19:419–425CrossRefGoogle Scholar
  44. 44.
    Kong D, Cheng L, Dong L, Pan C, Yao H, Zhou D, Shu X (2016) Three-dimensional echocardiography in the evaluation of right ventricular global and regional systolic function in patients with atrial septal defect before and after percutaneous closure. Echocardiography 33:596–605CrossRefGoogle Scholar
  45. 45.
    Ağaç MT, Akyüz AR, Acar Z, Akdemir R, Korkmaz L, Kırış A, Erkuş E, Erkan H, Celik S (2012) Evaluation of right ventricular function in early period following transcatheter closure of atrial septal defect. Echocardiography 29:358–362CrossRefGoogle Scholar
  46. 46.
    Veldtman GR, Razack V, Siu S, El-Hajj H, Walker F, Webb GD, Benson LN, McLaughlin PR (2001) Right ventricular form and function after percutaneous atrial septal defect device closure. J Am Coll Cardiol 37:2108–2113CrossRefGoogle Scholar
  47. 47.
    Chirinos JA, Akers SR, Trieu L, Ischiropoulos H, Doulias PT, Tariq A, Vasim I, Koppula MR, Syed AA, Soto-Calderon H, Townsend RR, Cappola TP, Margulies KB, Zamani P (2016) Heart failure, left ventricular remodeling, and circulating nitric oxide metabolites. J Am Heart Assoc 5:e004133CrossRefGoogle Scholar
  48. 48.
    Abdel Hamid M, Bakhoum SW, Sharaf Y, Sabry D, El-Gengehe AT, Abdel-Latif A (2016) Circulating endothelial cells and endothelial function predict major adverse cardiac events and early adverse left ventricular remodeling in patients with ST-segment elevation myocardial infarction. J Interv Cardiol 29:89–98CrossRefGoogle Scholar
  49. 49.
    Bissinger A, Grycewicz T, Grabowicz W, Lubiński A (2011) Endothelial function and left ventricular remodeling in diabetic and non-diabetic patients after acute coronary syndrome. Med Sci Monit 17:CR73–77CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cardiology DepartmentHospital “F. Perinei”AltamuraItaly
  2. 2.Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, School of Medicine, PoliclinicoUniversity of BariBariItaly
  3. 3.Interventional Laboratory Section, Department of Emergency and Organ Transplantation, School of Medicine, PoliclinicoUniversity of BariBariItaly

Personalised recommendations