Effects of deep inspiration on QRS axis, T-wave axis and frontal QRS-T angle in the routine electrocardiogram

  • Satoshi KurisuEmail author
  • Kazuhiro Nitta
  • Yoji Sumimoto
  • Hiroki Ikenaga
  • Ken Ishibashi
  • Yukihiro Fukuda
  • Yasuki Kihara
Original Article


The frontal QRS-T angle on the electrocardiogram has been described as a variable of ventricular repolarization. We evaluated how deep inspiration affected QRS axis, T-wave axis and frontal QRS-T angle. We also assessed the effects on left ventricular volume on the association using myocardial perfusion SPECT. Fifty patients undergoing ECGs both in resting state and in deep inspiration and subsequent SPECT were enrolled. Frontal QRS-T angle was defined as the absolute value of the difference between the frontal QRS axis and T-wave axis. Change in frontal QRS-T angle was calculated using (QRS-T angle in deep inspiration−QRS-T angle in resting state). In resting state, QRS axis and T-wave axis were 20.9° ± 30.0° and 40.9° ± 36.1°, respectively. Frontal QRS-T angle was 35.9° ± 36.1°. Deep inspiration caused rightward shifts of QRS axis (42.3° ± 29.5°, p < 0.001) and T-wave axis (49.5° ± 39.7°, p < 0.001). However, deep inspiration did not affect frontal QRS-T angle (33.9° ± 35.8°, p = 0.44). Frontal QRS-T angle in deep inspiration had good correlation (r = 0.87, p < 0.001) and agreement with that in resting state. Left ventricular (LV) end-diastolic volume had a significant association with change in frontal QRS-T angle (r = 0.29, p = 0.04). Our data suggest that frontal QRS-T angle in deep inspiration has a good correlation with that in resting state, and the agreement is acceptable. In patients with dilated LV, QRS-T angle in deep inspiration may be susceptible to the overestimation.


Electrocardiogram Breathing Ventricular repolarization 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aro AL, Huikuri HV, Tikkanen JT, Junttila MJ, Rissanen HA, Reunanen A, Anttonen O (2012) QRS-T angle as a predictor of sudden cardiac death in a middle-aged general population. Europace 14:872–876CrossRefGoogle Scholar
  2. 2.
    Gotsman I, Keren A, Hellman Y, Banker J, Lotan C, Zwas DR (2013) Usefulness of electrocardiographic frontal QRS-T angle to predict increased morbidity and mortality in patients with chronic heart failure. Am J Cardiol 111:1452–1459CrossRefGoogle Scholar
  3. 3.
    May O, Graversen CB, Johansen MØ, Arildsen H (2017) A large frontal QRS-T angle is a strong predictor of the long-term risk of myocardial infarction and all-cause mortality in the diabetic population. J Diabetes Complicat 31:551–555CrossRefGoogle Scholar
  4. 4.
    Chen S, Hoss S, Zeniou V, Shauer A, Admon D, Zwas DR, Lotan C, Keren A, Gotsman I (2018) Electrocardiographic predictors of morbidity and mortality in patients with acute myocarditis: the importance of QRS-T angle. J Card Fail 24:3–8CrossRefGoogle Scholar
  5. 5.
    May O, Graversen CB, Johansen MØ, Arildsen H (2018) The prognostic value of the frontal QRS-T angle is comparable to cardiovascular autonomic neuropathy regarding long-term mortality in people with diabetes. A population based study. Diabetes Res Clin Pract 142:264–268CrossRefGoogle Scholar
  6. 6.
    Lazzeroni D, Bini M, Camaiora U, Castiglioni P, Moderato L, Ugolotti PT, Brambilla L, Brambilla V, Coruzzi P (2018) Prognostic value of frontal QRS-T angle in patients undergoing myocardial revascularization or cardiac valve surgery. J Electrocardiol 51:967–972CrossRefGoogle Scholar
  7. 7.
    Borleffs CJ, Scherptong RW, Man SC, van Welsenes GH, Bax JJ, van Erven L, Swenne CA, Schalij MJ (2009) Predicting ventricular arrhythmias in patients with ischemic heart disease: clinical application of the ECG-derived QRS-T angle. Circ Arrhythm Electrophysiol 2:548–554CrossRefGoogle Scholar
  8. 8.
    Smit D, de Cock CC, Thijs A, Smulders YM (2009) Effects of breath-holding position on the QRS amplitudes in the routine electrocardiogram. J Electrocardiol 42:400–404CrossRefGoogle Scholar
  9. 9.
    Uematsu Y, Moriwaki M, Yoshikawa M, Takahashi N, Kiraku J, Ashida T (1997) QRS axis shift in deep breathing. Rinsho Byori 45:595–598Google Scholar
  10. 10.
    Kurisu S, Nitta K, Sumimoto Y, Ikenaga H, Ishibashi K, Fukuda Y, Kihara Y (2018) Implications of electrocardiographic frontal QRS axis on left ventricular diastolic parameters derived from electrocardiogram-gated myocardial perfusion single photon emission computed tomography. Ann Nucl Med 32:404–409CrossRefGoogle Scholar
  11. 11.
    Kurisu S, Nitta K, Sumimoto Y, Ikenaga H, Ishibashi K, Fukuda Y, Kihara Y (2018) Effects of atrial fibrillation on myocardial washout rate of thallium-201 on myocardial perfusion single-photon emission computed tomography. Nucl Med Commun 39:597–600CrossRefGoogle Scholar
  12. 12.
    Kurisu S, Nitta K, Sumimoto Y, Ikenaga H, Ishibashi K, Fukuda Y, Kihara Y (2018) Frontal QRS-T angle and World Health Organization classification for body mass index. Int J Cardiol 272:185–188CrossRefGoogle Scholar
  13. 13.
    Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS (2007) Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol 14:433–454CrossRefGoogle Scholar
  14. 14.
    Foster JE, Engblom H, Martin TN, Wagner GS, Steedman T, Ferrua S, Elliott AT, Dargie HJ, Groenning BA (2005) Determination of left ventricular long-axis orientation using MRI: changes during the respiratory and cardiac cycles in normal and diseased subjects. Clin Physiol Funct Imaging 25:286–292CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Satoshi Kurisu
    • 1
    Email author
  • Kazuhiro Nitta
    • 1
  • Yoji Sumimoto
    • 1
  • Hiroki Ikenaga
    • 1
  • Ken Ishibashi
    • 1
  • Yukihiro Fukuda
    • 1
  • Yasuki Kihara
    • 1
  1. 1.Department of Cardiovascular MedicineHiroshima University Graduate School of Biomedical and Health SciencesHiroshimaJapan

Personalised recommendations