Advertisement

Heart and Vessels

, Volume 34, Issue 2, pp 375–384 | Cite as

Differential effect of concomitant antidiabetic agents on carotid atherosclerosis: a subgroup analysis of the PROLOGUE study

  • Atsushi TanakaEmail author
  • Atsushi Kawaguchi
  • Jun-ichi Oyama
  • Tomoko Ishizu
  • Hiroshi Ito
  • Jun Fukui
  • Taizo Kondo
  • Shigetaka Kuroki
  • Mamoru Nanasato
  • Yukihito Higashi
  • Kohei Kaku
  • Teruo Inoue
  • Toyoaki Murohara
  • Koichi NodeEmail author
Short Communication
  • 186 Downloads

Abstract

Accumulated evidence shows that some antidiabetic agents attenuate the progression of carotid atherosclerosis assessed as intima-media thickness (IMT). Although some studies have demonstrated an inhibitory effect of dipeptidyl peptidase-4 inhibitors on carotid IMT progression, in the PROLOGUE study sitagliptin failed to slow progression relative to conventional therapy for 24 months. We hypothesized that differences in the concomitant antidiabetic agents between the groups have influenced the progression of carotid IMT. We performed a post hoc analysis of the PROLOGUE study using subgroups stratified by concomitant antidiabetic agents. Although no subgroup with any combination of agents in the overall patients showed a significant difference between sitagliptin group and conventional therapy group in the changes from baseline in mean common carotid artery (CCA)-IMT at 24 months, a significant attenuation of mean CCA-IMT progression was observed in the sitagliptin group relative to conventional therapy group only in three combination subgroups aged < 70 years, namely no thiazolidinedione; no thiazolidinedione or biguanide; and no thiazolidinedione, biguanide or α-glucosidase inhibitor, even after adjustment for multiple confounding factors. In the three subgroups, no significant difference between sitagliptin group and conventional therapy group in the changes from baseline in HbA1c at 24 months was detected. Our data suggest that some concomitant agents, whose prescription frequencies were increased in the conventional therapy group, may have masked the inhibitory effect of sitagliptin on carotid IMT progression in the PROLOGUE study.

Keywords

Antidiabetic agent Combination therapy Intima-media thickness Sitagliptin Type 2 diabetes mellitus 

Notes

Acknowledgements

The authors thank the participants and staff for their essential contributions to the PROLOGUE study.

Author Contributions

All authors were PROLOGUE Study Investigators, contributed to the planning and conduct of the study, and critically reviewed the manuscript. A.T. prepared the first draft of the manuscript. A.K. was responsible for the statistical analyses. K.N. critically supervised the study. All authors read and approved the final version of manuscript.

Funding

The Clinical Research Promotion Foundation (No.1026).

Compliance with ethical standards

Conflict of interest

A.T. and A.K. declared no conflict of interest. J.O. belongs to the research program faculty (chair course) sponsored by Fukuda Denshi. T.Is. H.I. J.F. T.K. S.K. and M.N. declared no conflict of interest. Y.H. has received honoraria from Astellas, MSD, Boehringer Ingelheim, Teijin, AstraZeneca, Takeda, Sanofi, and Shionogi; research grant from Kao; scholarships or donations from Takeda, Boehringer Ingelheim, MSD, Mitsubishi Tanabe, and Shionogi. K.K. has received honoraria from Astellas, MSD, Ono, Kowa, Novo Nordisk, Boehringer Ingelheim, Sanofi, Taisho Toyama, Takeda, and Mitsubishi Tanabe. T.In. has received honoraria from Mochida and Bayer; scholarships or donations from Kaatsu Japan, Goodman, Clinico, Shionogi, St. Jude Medical, Daiichi Sankyo, Takeda, Teijin, Boehringer Ingelheim, Boston Scientific, Union Tool, and Bayer. T.M. has received honoraria from Bayer, Boehringer Ingelheim, Daiichi Sankyo, Kowa, Mitsubishi Tanabe, MSD, Pfizer, Sumitomo Dainippon, and Takeda; scholarships or donations from Astellas, Boehringer Ingelheim, Daiichi Sankyo, Kowa, Mitsubishi Tanabe, MSD, Novartis, Otsuka, Pfizer, Sanofi, Sumitomo Dainippon, Takeda, and Teijin. K.N. has received honoraria from Daiichi Sankyo, Merck, Pfizer, Eli Lilly, Amgen, Boehringer Ingelheim, Mitsubishi Tanabe, and Astellas; research funding from Bayer, Teijin, Mitsubishi Tanabe, Astellas, Boehringer Ingelheim, and Asahi Kasei; and scholarships from Astellas, Daiichi Sankyo, Sumitomo Dainippon, Takeda, Mitsubishi Tanabe, and Boehringer Ingelheim.

References

  1. 1.
    Naqvi TZ, Lee MS (2014) Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging 7:1025–1038CrossRefGoogle Scholar
  2. 2.
    Nambi V, Chambless L, He M, Folsom AR, Mosley T, Boerwinkle E, Ballantyne CM (2012) Common carotid artery intima-media thickness is as good as carotid intima-media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study. Eur Heart J 33:183–190CrossRefGoogle Scholar
  3. 3.
    Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M (2007) Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115:459–467CrossRefGoogle Scholar
  4. 4.
    Sibal L, Agarwal SC, Home PD (2011) Carotid intima-media thickness as a surrogate marker of cardiovascular disease in diabetes. Diabetes Metab Syndr Obes 4:23–34CrossRefGoogle Scholar
  5. 5.
    Katakami N, Yamasaki Y, Hayaishi-Okano R, Ohtoshi K, Kaneto H, Matsuhisa M, Kosugi K, Hori M (2004) Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia 47:1906–1913CrossRefGoogle Scholar
  6. 6.
    Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D'Agostino RB Sr, Perez A, Provost JC, Haffner SM (2006) Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296:2572–2581CrossRefGoogle Scholar
  7. 7.
    Langenfeld MR, Forst T, Hohberg C, Kann P, Lübben G, Konrad T, Füllert SD, Sachara C, Pfützner A (2005) Pioglitazone decreases carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus: results from a controlled randomized study. Circulation 111:2525–2531CrossRefGoogle Scholar
  8. 8.
    Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, Temelkova-Kurktschiev T (2004) Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke 35:1073–1078CrossRefGoogle Scholar
  9. 9.
    Oyama J, Murohara T, Kitakaze M, Ishizu T, Sato Y, Kitagawa K, Kamiya H, Ajioka M, Ishihara M, Dai K, Nanasato M, Sata M, Maemura K, Tomiyama H, Higashi Y, Kaku K, Yamada H, Matsuhisa M, Yamashita K, Bando YK, Kashihara N, Ueda S, Inoue T, Tanaka A, Node K, PROLOGUE Study Investigators (2016) The Effect of Sitagliptin on Carotid Artery Atherosclerosis in Type 2 Diabetes: The PROLOGUE Randomized Controlled Trial. PLoS Med 13:e1002051CrossRefGoogle Scholar
  10. 10.
    Matsubara J, Sugiyama S, Sugamura K, Nakamura T, Fujiwara Y, Akiyama E, Kurokawa H, Nozaki T, Ohba K, Konishi M, Maeda H, Izumiya Y, Kaikita K, Sumida H, Jinnouchi H, Matsui K, Kim-Mitsuyama S, Takeya M, Ogawa H (2012) A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol 59:265–276CrossRefGoogle Scholar
  11. 11.
    Vittone F, Liberman A, Vasic D, Ostertag R, Esser M, Walcher D, Ludwig A, Marx N, Burgmaier M (2012) Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe (/) mice. Diabetologia 55:2267–2275CrossRefGoogle Scholar
  12. 12.
    Zeng Y, Li C, Guan M, Zheng Z, Li J, Xu W, Wang L, He F, Xue Y (2014) The DPP-4 inhibitor sitagliptin attenuates the progress of atherosclerosis in apolipoprotein-E-knockout mice via AMPK- and MAPK-dependent mechanisms. Cardiovasc Diabetol 13:32CrossRefGoogle Scholar
  13. 13.
    Koyama T, Tanaka A, Yoshida H, Oyama JI, Toyoda S, Sakuma M, Inoue T, Otsuka Y, Node K (2018) Comparison of the effects of linagliptin and voglibose on endothelial function in patients with type 2 diabetes and coronary artery disease: a prospective, randomized, pilot study (EFFORT). Heart Vessels 33:958–964CrossRefGoogle Scholar
  14. 14.
    Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, Schönbeck U, Libby P (2006) Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 26:611–617CrossRefGoogle Scholar
  15. 15.
    Huang NL, Chiang SH, Hsueh CH, Liang YJ, Chen YJ, Lai LP (2009) Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int J Cardiol 134:169–175CrossRefGoogle Scholar
  16. 16.
    Luo F, Guo Y, Ruan G, Li X (2016) Metformin promotes cholesterol efflux in macrophages by up-regulating FGF21 expression: a novel anti-atherosclerotic mechanism. Lipids Health Dis 15:109CrossRefGoogle Scholar
  17. 17.
    Redondo S, Ruiz E, Santos-Gallego CG, Padilla E, Tejerina T (2005) Pioglitazone induces vascular smooth muscle cell apoptosis through a peroxisome proliferator-activated receptor-gamma, transforming growth factor-beta1, and a Smad2-dependent mechanism. Diabetes 54:811–817CrossRefGoogle Scholar
  18. 18.
    Duan SZ, Usher MG, Mortensen RM (2008) Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res 102:283–294CrossRefGoogle Scholar
  19. 19.
    Wu ZH, Zhao SP, Chu LX, Ye HJ (2010) Pioglitazone reduces tumor necrosis factor-alpha serum concentration and mRNA expression of adipose tissue in hypercholesterolemic rabbits. Int J Cardiol 138:151–156CrossRefGoogle Scholar
  20. 20.
    Oyama J, Ishizu T, Sato Y, Kodama K, Bando YK, Murohara T, Node K (2014) Rationale and design of a study to evaluate the effects of sitagliptin on atherosclerosis in patients with diabetes mellitus: PROLOGUE study. Int J Cardiol 174:383–384CrossRefGoogle Scholar
  21. 21.
    Fisman EZ, Tenenbaum A (2015) Antidiabetic treatment with gliptins: focus on cardiovascular effects and outcomes. Cardiovasc Diabetol 14:129CrossRefGoogle Scholar
  22. 22.
    Mita T, Katakami N, Yoshii H, Onuma T, Kaneto H, Osonoi T, Shiraiwa T, Kosugi K, Umayahara Y, Yamamoto T, Yokoyama H, Kuribayashi N, Jinnouchi H, Gosho M, Shimomura I, Watada H, Collaborators on the Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A) Trial (2016) Alogliptin, a dipeptidyl peptidase 4 inhibitor, prevents the progression of carotid atherosclerosis in patients with type 2 diabetes: the study of preventive effects of alogliptin on diabetic atherosclerosis (SPEAD-A). Diabetes Care 39:139–148CrossRefGoogle Scholar
  23. 23.
    Mita T, Katakami N, Shiraiwa T, Yoshii H, Onuma T, Kuribayashi N, Osonoi T, Kaneto H, Kosugi K, Umayahara Y, Yamamoto T, Matsumoto K, Yokoyama H, Tsugawa M, Gosho M, Shimomura I, Watada H, Collaborators on the Sitagliptin Preventive Study of Intima-Media Thickness Evaluation (SPIKE) Trial (2016) Sitagliptin attenuates the progression of carotid intima-media thickening in insulin-treated patients with type 2 diabetes: the Sitagliptin Preventive Study of Intima-Media Thickness Evaluation (SPIKE): a randomized controlled trial. Diabetes Care 39:455–464CrossRefGoogle Scholar
  24. 24.
    Tanaka A, Yoshida H, Nanasato M, Oyama JI, Ishizu T, Ajioka M, Ishiki R, Saito M, Shibata Y, Kaku K, Maemura K, Higashi Y, Inoue T, Murohara T, Node K (2018) Sitagliptin on carotid intima-media thickness in type 2 diabetes patients receiving primary or secondary prevention of cardiovascular disease: a subgroup analysis of the PROLOGUE study. Int J Cardiol.  https://doi.org/10.1016/j.ijcard.2018.05.055 Google Scholar
  25. 25.
    Crouse JR 3rd, Raichlen JS, Riley WA, Evans GW, Palmer MK, O'Leary DH, Grobbee DE, Bots ML; METEOR Study Group (2007) Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. JAMA 297:1344–1353CrossRefGoogle Scholar
  26. 26.
    Konishi T, Funayama N, Yamamoto T, Hotta D, Nomura R, Nakagaki Y, Murahashi T, Kamiyama K, Yoshimoto T, Aoki T, Tanaka S (2018) Stabilization of symptomatic carotid atherosclerotic plaques by statins: a clinico-pathological analysis. Heart Vessels.  https://doi.org/10.1007/s00380-018-1193-6 Google Scholar
  27. 27.
    Ahn CM, Hong SJ, Park JH, Kim JS, Lim DS (2011) Cilostazol reduces the progression of carotid intima-media thickness without increasing the risk of bleeding in patients with acute coronary syndrome during a 2-year follow-up. Heart Vessels 26:502–510CrossRefGoogle Scholar
  28. 28.
    Liu Y, Hong T (2014) Combination therapy of dipeptidyl peptidase-4 inhibitors and metformin in type 2 diabetes: rationale and evidence. Diabetes Obes Metab 16:111–117CrossRefGoogle Scholar
  29. 29.
    Henry RR, Staels B, Fonseca VA, Chou MZ, Teng R, Golm GT, Langdon RB, Kaufman KD, Steinberg H, Goldstein BJ (2014) Efficacy and safety of initial combination treatment with sitagliptin and pioglitazone–a factorial study. Diabetes Obes Metab 16:223–230CrossRefGoogle Scholar
  30. 30.
    Ekström N, Svensson AM, Miftaraj M, Franzén S, Zethelius B, Eliasson B, Gudbjörnsdottir S (2016) Cardiovascular safety of glucose-lowering agents as add-on medication to metformin treatment in type 2 diabetes: report from the Swedish National Diabetes Register. Diabetes Obes Metab 18:990–998CrossRefGoogle Scholar
  31. 31.
    Hippisley-Cox J, Coupland C (2016) Diabetes treatments and risk of heart failure, cardiovascular disease, and all cause mortality: cohort study in primary care. BMJ 354:i3477CrossRefGoogle Scholar
  32. 32.
    Costanzo P, Perrone-Filardi P, Vassallo E, Paolillo S, Cesarano P, Brevetti G, Chiariello M (2010) Does carotid intima-media thickness regression predict reduction of cardiovascular events? A meta-analysis of 41 randomized trials. J Am Coll Cardiol 56:2006–2020CrossRefGoogle Scholar
  33. 33.
    den Ruijter HM, Peters SA, Groenewegen KA, Anderson TJ, Britton AR, Dekker JM, Engström G, Eijkemans MJ, Evans GW, de Graaf J, Grobbee DE, Hedblad B, Hofman A, Holewijn S, Ikeda A, Kavousi M, Kitagawa K, Kitamura A, Koffijberg H, Ikram MA, Lonn EM, Lorenz MW, Mathiesen EB, Nijpels G, Okazaki S, O'Leary DH, Polak JF, Price JF, Robertson C, Rembold CM, Rosvall M, Rundek T, Salonen JT, Sitzer M, Stehouwer CD, Witteman JC, Moons KG, Bots ML (2013) Common carotid intima-media thickness does not add to Framingham risk score in individuals with diabetes mellitus: the USE-IMT initiative. Diabetologia 56:1494–1502CrossRefGoogle Scholar
  34. 34.
    Lorenz MW, Price JF, Robertson C, Bots ML, Polak JF, Poppert H, Kavousi M, Dörr M, Stensland E, Ducimetiere P, Ronkainen K, Kiechl S, Sitzer M, Rundek T, Lind L, Liu J, Bergström G, Grigore L, Bokemark L, Friera A, Yanez D, Bickel H, Ikram MA, Völzke H, Johnsen SH, Empana JP, Tuomainen TP, Willeit P, Steinmetz H, Desvarieux M, Xie W, Schmidt C, Norata GD, Suarez C, Sander D, Hofman A, Schminke U, Mathiesen E, Plichart M, Kauhanen J, Willeit J, Sacco RL, McLachlan S, Zhao D, Fagerberg B, Catapano AL, Gabriel R, Franco OH, Bülbül A, Scheckenbach F, Pflug A, Gao L, Thompson SG (2015) Carotid intima-media thickness progression and risk of vascular events in people with diabetes: results from the PROG-IMT collaboration. Diabetes Care 38:1921–1929CrossRefGoogle Scholar
  35. 35.
    Lorenz MW, Polak JF, Kavousi M, Mathiesen EB, Völzke H, Tuomainen TP, Sander D, Plichart M, Catapano AL, Robertson CM, Kiechl S, Rundek T, Desvarieux M, Lind L, Schmid C, DasMahapatra P, Gao L, Ziegelbauer K, Bots ML, Thompson SG, PROG-IMT Study Group (2012) Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet 379:2053–2062CrossRefGoogle Scholar
  36. 36.
    Yokoyama H, Katakami N, Yamasaki Y (2006) Recent advances of intervention to inhibit progression of carotid intima-media thickness in patients with type 2 diabetes mellitus. Stroke 37:2420–2427CrossRefGoogle Scholar
  37. 37.
    Djaberi R, Schuijf JD, Jukema JW, Rabelink TJ, Stokkel MP, Smit JW, de Koning EJ, Bax JJ (2010) Increased carotid intima-media thickness as a predictor of the presence and extent of abnormal myocardial perfusion in type 2 diabetes. Diabetes Care 33:372–374CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Atsushi Tanaka
    • 1
    Email author
  • Atsushi Kawaguchi
    • 2
  • Jun-ichi Oyama
    • 1
  • Tomoko Ishizu
    • 3
  • Hiroshi Ito
    • 4
  • Jun Fukui
    • 5
  • Taizo Kondo
    • 6
  • Shigetaka Kuroki
    • 7
  • Mamoru Nanasato
    • 8
  • Yukihito Higashi
    • 9
  • Kohei Kaku
    • 10
  • Teruo Inoue
    • 11
  • Toyoaki Murohara
    • 12
  • Koichi Node
    • 1
    Email author
  1. 1.Department of Cardiovascular MedicineSaga UniversitySagaJapan
  2. 2.Clinical Research CenterSaga UniversitySagaJapan
  3. 3.Department of Clinical Laboratory Medicine, Faculty of MedicineUniversity of TsukubaTsukubaJapan
  4. 4.Department of Cardiovascular and Respiratory MedicineAkita University Graduate School of MedicineAkitaJapan
  5. 5.Division of CardiologyHokusho Central HospitalSaseboJapan
  6. 6.Department of Cardiovascular MedicineGifu Prefectural Tajimi HospitalTajimiJapan
  7. 7.Division of Internal MedicineEguchi HospitalOgiJapan
  8. 8.Cardiovascular CenterJapanese Red Cross Nagoya Daini HospitalNagoyaJapan
  9. 9.Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
  10. 10.Department of General Internal Medicine, Kawasaki Medical SchoolKurashikiJapan
  11. 11.Department of Cardiovascular MedicineDokkyo Medical UniversityMibuJapan
  12. 12.Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations