Advertisement

Myocardial perfusion defect assessed by single-photon emission computed tomography and frontal QRS-T angle in patients with prior anterior myocardial infarction

  • Satoshi KurisuEmail author
  • Kazuhiro Nitta
  • Yoji Sumimoto
  • Hiroki Ikenaga
  • Ken Ishibashi
  • Yukihiro Fukuda
  • Yasuki Kihara
Original Article
  • 15 Downloads

Abstract

The frontal QRS-T angle is one of the markers of ventricular repolarization. We sought to assess the effects of myocardial perfusion defect on QRS-T angle in patients with prior anterior myocardial infarction (MI). Seventy-one patients with prior anterior MI and 71 age- and sex-matched control subjects having no myocardial perfusion defect were selected. Frontal QRS-T angle was defined as the absolute value of the difference between the frontal plane QRS axis and T-wave axis. The extent of myocardial perfusion defect was determined using myocardial perfusion single-photon emission computed tomography (SPECT). The extent of myocardial perfusion defect of patients with prior anterior MI was 21.8 ± 13.7%. Frontal QRS-T angle was significantly larger in patients with prior anterior MI than control subjects (82° ± 49° vs 30° ± 26°, p < 0.001). Prevalence of abnormal frontal QRS-T angle defined as more than 90° was significantly higher in patients with prior anterior MI than control subjects (42% vs 4%, p < 0.001). Multivariate linear regression analysis showed that age (β=0.18, p = 0.02) and myocardial perfusion defect (β = 0.46, p = 0.02) were independent determinants of frontal QRS-T angle. Our results suggest that the extent of myocardial perfusion defect is an independent determinant of frontal QRS-T angle in patients with prior anterior MI.

Keywords

Electrocardiogram Myocardial infarction Ventricular repolarization 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Oehler A, Feldman T, Henrikson CA, Tereshchenko LG (2014) QRS-T angle: a review. Ann Noninvasive Electrocardiol 19:534–542CrossRefGoogle Scholar
  2. 2.
    Aro AL, Huikuri HV, Tikkanen JT, Junttila MJ, Rissanen HA, Reunanen A, Anttonen O (2012) QRS-T angle as a predictor of sudden cardiac death in a middle-aged general population. Europace 14:872–876CrossRefGoogle Scholar
  3. 3.
    May O, Graversen CB, Johansen MØ, Arildsen H (2017) A large frontal QRS-T angle is a strong predictor of the long-term risk of myocardial infarction and all-cause mortality in the diabetic population. J Diabetes Complicat 31:551–555CrossRefGoogle Scholar
  4. 4.
    Gotsman I, Keren A, Hellman Y, Banker J, Lotan C, Zwas DR (2013) Usefulness of electrocardiographic frontal QRS-T angle to predict increased morbidity and mortality in patients with chronic heart failure. Am J Cardiol 111:1452–1459CrossRefGoogle Scholar
  5. 5.
    Lown MT, Munyombwe T, Harrison W, West RM, Hall CA, Morrell C, Jackson BM, Sapsford RJ, Kilcullen N, Pepper CB, Batin PD, Hall AS, Gale CP, Evaluation of Methods and Management of Acute Coronary Events (EMMACE) Investigators (2012) Association of frontal QRS-T angle-age risk score on admission electrocardiogram with mortality in patients admitted with an acute coronary syndrome. Am J Cardiol 109:307–313CrossRefGoogle Scholar
  6. 6.
    Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS (2007) Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol 14:433–454CrossRefGoogle Scholar
  7. 7.
    Kurisu S, Shimonaga T, Ikenaga H, Watanabe N, Higaki T, Ishibashi K, Dohi Y, Fukuda Y, Kihara Y (2017) Selvester QRS score and total perfusion deficit calculated by quantitative gated single-photon emission computed tomography in patients with prior anterior myocardial infarction in the coronary intervention era. Heart Vessels 32:369–375CrossRefGoogle Scholar
  8. 8.
    Kurisu S, Nitta K, Sumimoto Y, Ikenaga H, Ishibashi K, Fukuda Y, Kihara Y (2018) Effects of aortic tortuosity on left ventricular diastolic parameters derived from gated myocardial perfusion single photon emission computed tomography in patients with normal myocardial perfusion. Heart Vessels 33:651–656CrossRefGoogle Scholar
  9. 9.
    Pavri BB, Hillis MB, Subacius H, Brumberg GE, Schaechter A, Levine JH, Kadish A, Defibrillators in Nonischemic Cardiomyopathy Treatment Evaluation (DEFINITE) Investigators (2008) Prognostic value and temporal behavior of the planar QRS-T angle in patients with nonischemic cardiomyopathy. Circulation 117:3181–3186CrossRefGoogle Scholar
  10. 10.
    Padala SK, Ghatak A, Padala S, Katten DM, Polk DM, Heller GV (2014) Cardiovascular risk stratification in diabetic patients following stress single-photon emission-computed tomography myocardial perfusion imaging: the impact of achieved exercise level. J Nucl Cardiol 21:1132–1143CrossRefGoogle Scholar
  11. 11.
    Kasama S, Toyama T, Sato M, Sano H, Ueda T, Sasaki T, Nakahara T, Higuchi T, Tsushima Y, Kurabayashi M (2016) Prognostic value of myocardial perfusion single photon emission computed tomography for major adverse cardiac cerebrovascular and renal events in patients with chronic kidney disease: results from first year of follow-up of the Gunma-CKD SPECT multicenter study. Eur J Nucl Med Mol Imaging 43:302–311CrossRefGoogle Scholar
  12. 12.
    Huikuri HV, Castellanos A, Myerburg RJ (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345:1473–1482CrossRefGoogle Scholar
  13. 13.
    Zeidan-Shwiri T, Yang Y, Lashevsky I, Kadmon E, Kagal D, Dick A, Laish Farkash A, Paul G, Gao D, Shurrab M, Newman D, Wright G, Crystal E (2015) Magnetic resonance estimates of the extent and heterogeneity of scar tissue in ICD patients with ischemic cardiomyopathy predict ventricular arrhythmia. Heart Rhythm 12:802–808CrossRefGoogle Scholar
  14. 14.
    Scott PA, Rosengarten JA, Murday DC, Peebles CR, Harden SP, Curzen NP, Morgan JM (2013) Left ventricular scar burden specifies the potential for ventricular arrhythmogenesis: an LGE-CMR study. J Cardiovasc Electrophysiol 24:430–436CrossRefGoogle Scholar
  15. 15.
    He YM, Yang XJ, Wu YW, Zhang B (2009) Twenty-four-hour thallium-201 imaging enhances the detection of myocardial ischemia and viability after myocardial infarction: a comparison study with echocardiography follow-up. Clin Nucl Med 34:65–69CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Satoshi Kurisu
    • 1
    Email author
  • Kazuhiro Nitta
    • 1
  • Yoji Sumimoto
    • 1
  • Hiroki Ikenaga
    • 1
  • Ken Ishibashi
    • 1
  • Yukihiro Fukuda
    • 1
  • Yasuki Kihara
    • 1
  1. 1.Department of Cardiovascular MedicineHiroshima University Graduate School of Biomedical and Health SciencesHiroshimaJapan

Personalised recommendations