Advertisement

High-sensitivity cardiac troponin decrease after percutaneous coronary intervention in patients with stable coronary artery disease

  • Rikuta Hamaya
  • Tomoki Horie
  • Taishi Yonetsu
  • Akinori Sugano
  • Yoshihisa Kanaji
  • Eisuke Usui
  • Masahiro Hoshino
  • Masao Yamaguchi
  • Hiroaki Ohya
  • Yohei Sumino
  • Masahiro Hada
  • Hidenori Hirano
  • Yoshinori Kanno
  • Haruhito Yuki
  • Kenzo Hirao
  • Tsunekazu KakutaEmail author
Original Article
  • 26 Downloads

Abstract

Baseline cardiac troponin is a strong predictor of major adverse cardiac events (MACE), and the high sensitive assay can provide risk stratification under the 99th percentile values. Currently, prognostic benefit of PCI has not been established in patients with stable coronary artery disease (CAD), and the influence on baseline troponin levels is unknown. This study aimed to investigate the impact of PCI on baseline high-sensitivity cardiac troponin-I (hs-cTnI) levels and the association with MACE incidence. For 401 patients with stable CAD who were indicated for PCI, baseline hs-cTnI levels were measured before PCI for two times (the average: pre-PCI hs-cTnI) and 10 months after PCI (post-PCI remote hs-cTnI). Hs-cTnI day-to-day variability was assessed based on the pre-PCI values and patients were divided into three groups (Increase/No change/Decrease group) according to the extent of hs-cTnI change (post-PCI remote hs-cTnI minus pre-PCI hs-cTnI) considering the day-to-day variability. A total of 77 patients were categorized into Decrease group. Although Decrease group had significantly higher pre-PCI hs-cTnI levels compared to the other groups, this group had lowest incidence of MACE (p < 0.001). Hs-cTnI changes were independently associated with MACE incidence after adjustment (HR 2.069, 95% CI 1.032–4.006, p = 0.041 for Increase group vs. No change group; HR 0.143, 95% CI 0.008–0.680, p = 0.009 for Decrease group vs. No change group). Hs-cTnI change following PCI was significantly predicted by pre-PCI hs-cTnI, hs-cTnI variability, the presence of dyslipidemia, multivessel disease, and lesions with chronic total occlusion or low quantitative flow ratio. In conclusion, PCI could lower hs-cTnI levels in a certain subset of patients, in whom prognostic benefit might be expected by the intervention.

Keywords

Percutaneous coronary intervention High-sensitivity cardiac troponin Stable coronary artery disease Multivessel disease Quantitative flow ratio 

Notes

Acknowledgements

We thank all the physicians, nurses, other catheter laboratory staff members, and patients involved in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

380_2018_1325_MOESM1_ESM.pdf (69 kb)
Supplementary material 1 (PDF 69 kb)
380_2018_1325_MOESM2_ESM.pdf (77 kb)
Supplementary material 2 (PDF 78 kb)
380_2018_1325_MOESM3_ESM.pdf (75 kb)
Supplementary material 3 (PDF 76 kb)

References

  1. 1.
    Roos A, Bandstein N, Lundback M, Hammarsten O, Ljung R, Holzmann MJ (2017) Stable high-sensitivity cardiac troponin T levels and outcomes in patients with chest pain. J Am Coll Cardiol 70:2226–2236CrossRefGoogle Scholar
  2. 2.
    Ford I, Shah AS, Zhang R, McAllister DA, Strachan FE, Caslake M, Newby DE, Packard CJ, Mills NL (2016) High-sensitivity cardiac troponin, statin therapy, and risk of coronary heart disease. J Am Coll Cardiol 68:2719–2728CrossRefGoogle Scholar
  3. 3.
    Zimmermann FM, Ferrara A, Johnson NP, van Nunen LX, Escaned J, Albertsson P, Erbel R, Legrand V, Gwon HC, Remkes WS, Stella PR, van Schaardenburgh P, Bech GJ, De Bruyne B, Pijls NH (2015) Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J 36:3182–3188CrossRefGoogle Scholar
  4. 4.
    Al-Lamee R, Thompson D, Dehbi HM, Sen S, Tang K, Davies J, Keeble T, Mielewczik M, Kaprielian R, Malik IS, Nijjer SS, Petraco R, Cook C, Ahmad Y, Howard J, Baker C, Sharp A, Gerber R, Talwar S, Assomull R, Mayet J, Wensel R, Collier D, Shun-Shin M, Thom SA, Davies JE, Francis DP (2018) Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet 391:31–40CrossRefGoogle Scholar
  5. 5.
    Hamaya R, Yonetsu T, Kanaji Y, Usui E, Hoshino M, Yamaguchi M, Hada M, Kanno Y, Murai T, Hirao K, Kakuta T (2018) Diagnostic and prognostic efficacy of coronary flow capacity obtained using pressure-temperature sensor-tipped wire-derived physiological indices. JACC Cardiovasc Interv 11:728–737CrossRefGoogle Scholar
  6. 6.
    Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, Appelman Y, Arslan F, Barbato E, Chen SL, Di Serafino L, Dominguez-Franco AJ, Dupouy P, Esen AM, Esen OB, Hamilos M, Iwasaki K, Jensen LO, Jimenez-Navarro MF, Katritsis DG, Kocaman SA, Koo BK, Lopez-Palop R, Lorin JD, Miller LH, Muller O, Nam CW, Oud N, Puymirat E, Rieber J, Rioufol G, Rodes-Cabau J, Sedlis SP, Takeishi Y, Tonino PA, Van Belle E, Verna E, Werner GS, Fearon WF, Pijls NH, De Bruyne B, Gould KL (2014) Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol 64:1641–1654CrossRefGoogle Scholar
  7. 7.
    Xu B, Tu S, Qiao S, Qu X, Chen Y, Yang J, Guo L, Sun Z, Li Z, Tian F, Fang W, Chen J, Li W, Guan C, Holm NR, Wijns W, Hu S (2017) Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis. J Am Coll Cardiol 70:3077–3087CrossRefGoogle Scholar
  8. 8.
    Klinkenberg LJ, van Dijk JW, Tan FE, van Loon LJ, van Dieijen-Visser MP, Meex SJ (2014) Circulating cardiac troponin T exhibits a diurnal rhythm. J Am Coll Cardiol 63:1788–1795CrossRefGoogle Scholar
  9. 9.
    Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M, Nef H, Tebaldi M, Murasato Y, Lansky A, Barbato E, van der Heijden LC, Reiber JH, Holm NR, Wijns W (2016) Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC Cardiovasc Interv 9:2024–2035CrossRefGoogle Scholar
  10. 10.
    Sedlis SP, Hartigan PM, Teo KK, Maron DJ, Spertus JA, Mancini GB, Kostuk W, Chaitman BR, Berman D, Lorin JD, Dada M, Weintraub WS, Boden WE (2015) Effect of PCI on long-term survival in patients with stable ischemic heart disease. N Engl J Med 373:1937–1946CrossRefGoogle Scholar
  11. 11.
    Hamaya R, Sugano A, Kanaji Y, Fukuda T, Kanno Y, Yonetsu T, Usui E, Hoshino M, Hada M, Ohya H, Sumino Y, Yuki H, Murai T, Lee T, Kakuta T (2018) Absolute myocardial blood flow after elective percutaneous coronary intervention evaluated on phase-contrast cine cardiovascular magnetic resonance imaging. Circ J 82(7):1858–1865CrossRefGoogle Scholar
  12. 12.
    Kanaji Y, Murai T, Yonetsu T, Usui E, Araki M, Matsuda J, Hoshino M, Yamaguchi M, Niida T, Hada M, Ichijyo S, Hamaya R, Kanno Y, Isobe M, Kakuta T (2017) Effect of elective percutaneous coronary intervention on hyperemic absolute coronary blood flow volume and microvascular resistance. Circ Cardiovasc Interv 10:e005073CrossRefGoogle Scholar
  13. 13.
    Korosoglou G, Lehrke S, Mueller D, Hosch W, Kauczor HU, Humpert PM, Giannitsis E, Katus HA (2011) Determinants of troponin release in patients with stable coronary artery disease: insights from CT angiography characteristics of atherosclerotic plaque. Heart 97:823–831CrossRefGoogle Scholar
  14. 14.
    Ndrepepa G, Braun S, Schulz S, Mehilli J, Schomig A, Kastrati A (2011) High-sensitivity troponin T level and angiographic severity of coronary artery disease. Am J Cardiol 108:639–643CrossRefGoogle Scholar
  15. 15.
    Lee T, Murai T, Yonetsu T, Suzuki A, Hishikari K, Kanaji Y, Matsuda J, Araki M, Niida T, Isobe M, Kakuta T (2015) Relationship between subclinical cardiac troponin I elevation and culprit lesion characteristics assessed by optical coherence tomography in patients undergoing elective percutaneous coronary intervention. Circ Cardiovasc Interv 8:001727Google Scholar
  16. 16.
    Taqueti VR, Everett BM, Murthy VL, Gaber M, Foster CR, Hainer J, Blankstein R, Dorbala S, Di Carli MF (2015) Interaction of impaired coronary flow reserve and cardiomyocyte injury on adverse cardiovascular outcomes in patients without overt coronary artery disease. Circulation 131:528–535CrossRefGoogle Scholar
  17. 17.
    Usui E, Murai T, Kanaji Y, Hoshino M, Yamaguchi M, Hada M, Hamaya R, Kanno Y, Lee T, Yonetsu T, Kakuta T (2018) Clinical significance of concordance or discordance between fractional flow reserve and coronary flow reserve for coronary physiological indices, microvascular resistance, and prognosis after elective percutaneous coronary intervention. EuroIntervention 14(7):798–805CrossRefGoogle Scholar
  18. 18.
    Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, Dorbala S, Blankstein R, Di Carli MF (2015) Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation 131:19–27CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Rikuta Hamaya
    • 1
  • Tomoki Horie
    • 1
  • Taishi Yonetsu
    • 2
  • Akinori Sugano
    • 1
  • Yoshihisa Kanaji
    • 1
  • Eisuke Usui
    • 1
  • Masahiro Hoshino
    • 1
  • Masao Yamaguchi
    • 1
  • Hiroaki Ohya
    • 1
  • Yohei Sumino
    • 1
  • Masahiro Hada
    • 1
  • Hidenori Hirano
    • 1
  • Yoshinori Kanno
    • 1
  • Haruhito Yuki
    • 1
  • Kenzo Hirao
    • 2
  • Tsunekazu Kakuta
    • 1
    Email author
  1. 1.Division of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraJapan
  2. 2.Department of Cardiovascular MedicineTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations