Heart and Vessels

, Volume 33, Issue 7, pp 722–732 | Cite as

ZBTB17 loss-of-function mutation contributes to familial dilated cardiomyopathy

  • Yu-Min Sun
  • Jun WangEmail author
  • Ying-Jia Xu
  • Xin-Hua Wang
  • Fang Yuan
  • Hua Liu
  • Ruo-Gu Li
  • Min Zhang
  • Yan-Jie Li
  • Hong-Yu Shi
  • Liang Zhao
  • Xing-Biao Qiu
  • Xin-Kai Qu
  • Yi-Qing YangEmail author
Original Article


Dilated cardiomyopathy (DCM) is a common primary myocardial disease leading to congestive heart failure, arrhythmia and sudden cardiac death. Increasing studies demonstrate substantial genetic determinants for DCM. Nevertheless, DCM is of substantial genetic heterogeneity, and the genetic basis for DCM in most patients remains unclear. The present study was sought to investigate the association of a genetic variant in the ZBTB17 gene with DCM. A cohort of 158 unrelated patients with idiopathic DCM and a total of 230 unrelated, ethnically matched healthy individuals used as controls were recruited. The coding exons and splicing boundaries of ZBTB17 were sequenced in all study participants. The functional effect of the mutant ZBTB17 was characterized by a dual-luciferase reporter assay system. A novel heterozygous ZBTB17 mutation, p.E243X, was discovered in an index patient. Genetic scan of the mutation carrier’s available relatives showed that the mutation was present in all affected family members but absent in unaffected family members. Analysis of the proband’s pedigree revealed that the mutation co-segregated with DCM, which was transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation was absent in the 460 control chromosomes. Functional assays demonstrated that the truncated ZBTB17 protein had no transcriptional activity as compared with its wild-type counterpart. This study firstly associates ZBTB17 loss-of-function mutation with enhanced susceptibility to DCM in humans, which provides novel insight into the molecular mechanism underpinning DCM, implying potential implications for genetic counseling and personalized management of DCM.


Dilated cardiomyopathy Genetics Transcription factor ZBTB17 Reporter gene assay 



The authors would like to thank the study subjects for their dedication to the study. This work was mainly funded by Grants from the National Natural Science Foundation of China (Grant numbers 81470372, 81400244 and 81370400), the Key Program for Basic Research of Shanghai, China (Grant number 14JC1405500), the Natural Science Foundation of Shanghai, China (Grant number 15ZR1438100), and the Experimental Animal Program of Shanghai, China (Grant number 16140901602).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to state.


  1. 1.
    Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK (2016) The diagnosis and evaluation of dilated cardiomyopathy. J Am Coll Cardiol 67:2996–3010CrossRefPubMedGoogle Scholar
  2. 2.
    Weintraub RG, Semsarian C, Macdonald P (2017) Dilated cardiomyopathy. Lancet 390:400–414CrossRefPubMedGoogle Scholar
  3. 3.
    Elliott P, Charron P, Blanes JR, Tavazzi L, Tendera M, Konté M, Laroche C, Maggioni AP, EORP Cardiomyopathy Registry Pilot Investigators (2016) European Cardiomyopathy Pilot Registry: EURObservational Research Programme of the European Society of Cardiology. Eur Heart J 37:164–173CrossRefPubMedGoogle Scholar
  4. 4.
    Yagishita-Tagawa Y, Abe Y, Arai K, Yagishita D, Takagi A, Ashihara K, Shoda M, Naruko T, Itoh A, Haze K, Yoshikawa J, Hagiwara N (2013) Low-dose dobutamine induces left ventricular mechanical dyssynchrony in patients with dilated cardiomyopathy and a narrow QRS: a study using real-time three-dimensional echocardiography. J Cardiol 61:275–280CrossRefPubMedGoogle Scholar
  5. 5.
    Takahashi A, Shiga T, Shoda M, Tanizaki K, Manaka T, Ejima K, Kasanuki H, Hagiwara N (2010) Gender difference in arrhythmic occurrences in patients with nonischemic dilated cardiomyopathy and implantable cardioverter-defibrillator. Heart Vessels 25:150–154CrossRefPubMedGoogle Scholar
  6. 6.
    Ikeda Y, Inomata T, Iida Y, Iwamoto-Ishida M, Nabeta T, Ishii S, Sato T, Yanagisawa T, Mizutani T, Naruke T, Koitabashi T, Takeuchi I, Nishii M, Ako J (2016) Time course of left ventricular reverse remodeling in response to pharmacotherapy: clinical implication for heart failure prognosis in patients with idiopathic dilated cardiomyopathy. Heart Vessels 31:545–554CrossRefPubMedGoogle Scholar
  7. 7.
    Ikeda Y, Inomata T, Fujita T, Iida Y, Kaida T, Nabeta T, Ishii S, Maekawa E, Yanagisawa T, Mizutani T, Naruke T, Koitabashi T, Takeuchi I, Ako J (2017) Higher hemoglobin A1c levels are associated with impaired left ventricular diastolic function and higher incidence of adverse cardiac events in patients with nonischemic dilated cardiomyopathy. Heart Vessels 32:446–457CrossRefPubMedGoogle Scholar
  8. 8.
    Koizumi K, Hoshiai M, Toda T, Katsumata N, Kise H, Hasebe Y, Kouno Y, Kaga S, Suzuki S, Sugita K (2017) Outcomes of plasma exchange for severe dilated cardiomyopathy in children. Heart Vessels 32:61–67CrossRefPubMedGoogle Scholar
  9. 9.
    Pérez-Serra A, Toro R, Sarquella-Brugada G, de Gonzalo-Calvo D, Cesar S, Carro E, Llorente-Cortes V, Iglesias A, Brugada J, Brugada R, Campuzano O (2016) Genetic basis of dilated cardiomyopathy. Int J Cardiol 224:461–472CrossRefPubMedGoogle Scholar
  10. 10.
    Sabater-Molina M, Navarro M, García-Molina Sáez E, Garrido I, Pascual-Figal D, González Carrillo J, Gimeno Blanes JR (2016) Mutation in JPH2 cause dilated cardiomyopathy. Clin Genet 90:468–469CrossRefPubMedGoogle Scholar
  11. 11.
    Reinstein E, Gutierrez-Fernandez A, Tzur S, Bormans C, Marcu S, Tayeb-Fligelman E, Vinkler C, Raas-Rothschild A, Irge D, Landau M, Shohat M, Puente XS, Behar DM, Lopez-Otın C (2016) Congenital dilated cardiomyopathy caused by biallelic mutations in Filamin C. Eur J Hum Genet 24:1792–1796CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Beqqali A, Bollen IA, Rasmussen TB, van den Hoogenhof MM, van Deutekom HW, Schafer S, Haas J, Meder B, Sørensen KE, van Oort RJ, Mogensen J, Hubner N, Creemers EE, van der Velden J, Pinto YM (2016) A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank–Starling mechanism. Cardiovasc Res 112:452–463CrossRefPubMedGoogle Scholar
  13. 13.
    Al-Hassnan ZN, Shinwari ZM, Wakil SM, Tulbah S, Mohammed S, Rahbeeni Z, Alghamdi M, Rababh M, Colak D, Kaya N, Al-Fayyadh M, Alburaiki J (2016) A substitution mutation in cardiac ubiquitin ligase, FBXO32, is associated with an autosomal recessive form of dilated cardiomyopathy. BMC Med Genet 17:3CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brodehl A, Dieding M, Biere N, Unger A, Klauke B, Walhorn V, Gummert J, Schulz U, Linke WA, Gerull B, Vorgert M, Anselmetti D, Milting H (2016) Functional characterization of the novel DES mutation p. L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect. J Mol Cell Cardiol 91:207–214CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou YM, Dai XY, Qiu XB, Yuan F, Li RG, Xu YJ, Qu XK, Huang RT, Xue S, Yang YQ (2016) HAND1 loss-of-function mutation associated with familial dilated cardiomyopathy. Clin Chem Lab Med 54:1161–1167CrossRefPubMedGoogle Scholar
  16. 16.
    Hanley A, Walsh KA, Joyce C, McLellan MA, Clauss S, Hagen A, Shea MA, Tucker NR, Lin H, Fahy GJ, Ellinor PT (2016) Mutation of a common amino acid in NKX2.5 results in dilated cardiomyopathy in two large families. BMC Med Genet 17:83CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhao CM, Sun B, Song HM, Wang J, Xu WJ, Jiang JF, Qiu XB, Yuan F, Xu JH, Yang YQ (2016) TBX20 loss-of-function mutation associated with familial dilated cardiomyopathy. Clin Chem Lab Med 54:325–332CrossRefPubMedGoogle Scholar
  18. 18.
    Dalin MG, Engström PG, Ivarsson EG, Unneberg P, Light S, Schaufelberger M, Gilljam T, Andersson B, Bergo MO (2017) Massive parallel sequencing questions the pathogenic role of missense variants in dilated cardiomyopathy. Int J Cardiol 228:742–748CrossRefPubMedGoogle Scholar
  19. 19.
    Jansweijer JA, Nieuwhof K, Russo F, Hoorntje ET, Jongbloed JD, Lekanne Deprez RH, Postma AV, Bronk M, van Rijsingen IA, de Haij S, Biagini E, van Haelst PL, van Wijngaarden J, van den Berg MP, Wilde AA, Mannens MM, de Boer RA, van Spaendonck-Zwarts KY, van Tintelen JP, Pinto YM (2017) Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur J Heart Fail 19:512–521CrossRefPubMedGoogle Scholar
  20. 20.
    Zhou C, Li C, Zhou B, Sun H, Koullourou V, Holt I, Puckelwartz MJ, Warren DT, Hayward R, Lin Z, Zhang L, Morris GE, McNally EM, Shackleton S, Rao L, Shanahan CM, Zhang Q (2017) Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Hum Mol Genet 26:2258–2276CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Truszkowska GT, Bilińska ZT, Muchowicz A, Pollak A, Biernacka A, Kozar-Kamińska K, Stawiński P, Gasperowicz P, Kosińska J, Zieliński T, Płoski R (2017) Homozygous truncating mutation in NRAP gene identified by whole exome sequencing in a patient with dilated cardiomyopathy. Sci Rep 7:3362CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Long PA, Theis JL, Shih YH, Maleszewski JJ, Abell Aleff PC, Evans JM, Xu X, Olson TM (2017) Recessive TAF1A mutations reveal ribosomopathy in siblings with end-stage pediatric dilated cardiomyopathy. Hum Mol Genet 26:2874–2881CrossRefPubMedGoogle Scholar
  23. 23.
    Petropoulou E, Soltani M, Firoozabadi AD, Namayandeh SM, Crockford J, Maroofian R, Jamshidi Y (2017) Digenic inheritance of mutations in the cardiac troponin (TNNT2) and cardiac beta myosin heavy chain (MYH7) as the cause of severe dilated cardiomyopathy. Eur J Med Genet 60:485–488CrossRefPubMedGoogle Scholar
  24. 24.
    Janin A, N’Guyen K, Habib G, Dauphin C, Chanavat V, Bouvagnet P, Eschalier R, Streichenberger N, Chevalier P, Millat G (2017) Truncating mutations on myofibrillar myopathies causing genes as prevalent molecular explanations on patients with dilated cardiomyopathy. Clin Genet 92:616–623CrossRefPubMedGoogle Scholar
  25. 25.
    Qiu XB, Qu XK, Li RG, Liu H, Xu YJ, Zhang M, Shi HY, Hou XM, Liu X, Yuan F, Sun YM, Wang J, Huang RT, Xue S, Yang YQ (2017) CASZ1 loss-of-function mutation contributes to familial dilated cardiomyopathy. Clin Chem Lab Med 55:1417–1425CrossRefPubMedGoogle Scholar
  26. 26.
    Cappola TP, Li M, He J, Ky B, Gilmore J, Qu L, Keating B, Reilly M, Kim CE, Glessner J, Frackelton E, Hakonarson H, Syed F, Hindes A, Matkovich SJ, Cresci S, Dorn GW 2nd (2010) Common variants in HSPB7 and FRMD4B associated with advanced heart failure. Circ Cardiovasc Genet 3:147–154CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Stark K, Esslinger UB, Reinhard W, Petrov G, Winkler T, Komajda M, Isnard R, Charron P, Villard E, Cambien F, Tiret L, Aumont MC, Dubourg O, Trochu JN, Fauchier L, Degroote P, Richter A, Maisch B, Wichter T, Zollbrecht C, Grassl M, Schunkert H, Linsel-Nitschke P, Erdmann J, Baumert J, Illig T, Klopp N, Wichmann HE, Meisinger C, Koenig W, Lichtner P, Meitinger T, Schillert A, König IR, Hetzer R, Heid IM, Regitz-Zagrosek V, Hengstenberg C (2010) Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy. PLoS Genet 6:e1001167CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Villard E, Perret C, Gary F, Proust C, Dilanian G, Hengstenberg C, Ruppert V, Arbustini E, Wichter T, Germain M, Dubourg O, Tavazzi L, Aumont MC, DeGroote P, Fauchier L, Trochu JN, Gibelin P, Aupetit JF, Stark K, Erdmann J, Hetzer R, Roberts AM, Barton PJ, Regitz-Zagrosek V, Cardiogenics Consortium, Aslam U, Duboscq-Bidot L, Meyborg M, Maisch B, Madeira H, Waldenström A, Galve E, Cleland JG, Dorent R, Roizes G, Zeller T, Blankenberg S, Goodall AH, Cook S, Tregouet DA, Tiret L, Isnard R, Komajda M, Charron P, Cambien F (2011) A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J 32:1065–1076CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Esslinger U, Garnier S, Korniat A, Proust C, Kararigas G, Müller-Nurasyid M, Empana JP, Morley MP, Perret C, Stark K, Bick AG, Prasad SK, Kriebel J, Li J, Tiret L, Strauch K, O’Regan DP, Marguiles KB, Seidman JG, Boutouyrie P, Lacolley P, Jouven X, Hengstenberg C, Komajda M, Hakonarson H, Isnard R, Arbustini E, Grallert H, Cook SA, Seidman CE, Regitz-Zagrosek V, Cappola TP, Charron P, Cambien F, Villard E (2017) Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy. PLoS One 12:e0172995CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li X, Luo R, Mo X, Jiang R, Kong H, Hua W, Wu X (2013) Polymorphism of ZBTB17 gene is associated with idiopathic dilated cardiomyopathy: a case control study in a Han Chinese population. Eur J Med Res 18:10CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ikeda Y, Inomata T, Fujita T, Iida Y, Nabeta T, Ishii S, Maekawa E, Yanagisawa T, Mizutani T, Naruke T, Koitabashi T, Takeuchi I, Ako J (2016) Cardiac fibrosis detected by magnetic resonance imaging on predicting time course diversity of left ventricular reverse remodeling in patients with idiopathic dilated cardiomyopathy. Heart Vessels 31:1817–1825CrossRefPubMedGoogle Scholar
  32. 32.
    Ishii S, Inomata T, Fujita T, Iida Y, Ikeda Y, Nabeta T, Yanagisawa T, Naruke T, Mizutani T, Koitabashi T, Takeuchi I, Ako J (2016) Clinical significance of endomyocardial biopsy in conjunction with cardiac magnetic resonance imaging to predict left ventricular reverse remodeling in idiopathic dilated cardiomyopathy. Heart Vessels 31:1960–1968CrossRefPubMedGoogle Scholar
  33. 33.
    Rubiś P, Wiśniowska-Śmiałek S, Biernacka-Fijałkowska B, Rudnicka-Sosin L, Wypasek E, Kozanecki A, Dziewięcka E, Faltyn P, Karabinowska A, Khachatryan L, Hlawaty M, Leśniak-Sobelga A, Kostkiewicz M, Płazak W, Podolec P (2017) Left ventricular reverse remodeling is not related to biopsy-detected extracellular matrix fibrosis and serum markers of fibrosis in dilated cardiomyopathy, regardless of the definition used for LVRR. Heart Vessels 32:714–725CrossRefPubMedGoogle Scholar
  34. 34.
    Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276CrossRefPubMedGoogle Scholar
  35. 35.
    Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Böhm M, Duboc D, Gimeno J, de Groote P, Imazio M, Heymans S, Klingel K, Komajda M, Limongelli G, Linhart A, Mogensen J, Moon J, Pieper PG, Seferovic PM, Schueler S, Zamorano JL, Caforio AL, Charron P (2016) Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 37:1850–1858CrossRefPubMedGoogle Scholar
  36. 36.
    Barrilleaux BL, Burow D, Lockwood SH, Yu A, Segal DJ, Knoepfler PS (2014) Miz-1 activates gene expression via a novel consensus DNA binding motif. PLoS One 9:e101151CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, Möröy T, Bartek J, Massagué J, Hänel F, Eilers M (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3:392–399CrossRefPubMedGoogle Scholar
  38. 38.
    Bernard D, Bédard M, Bilodeau J, Lavigne P (2013) Structural and dynamical characterization of the Miz-1 zinc fingers 5–8 by solution-state NMR. J Biomol NMR 57:103–116CrossRefPubMedGoogle Scholar
  39. 39.
    Wiese KE, Walz S, von Eyss B, Wolf E, Athineos D, Sansom O, Eilers M (2013) The role of MIZ-1 in Myc-dependent tumorigenesis. Cold Spring Harb Perspect Med 3:a014290CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Peukert K, Staller P, Schneider A, Carmichael G, Hänel F, Eilers M (1997) An alternative pathway for gene regulation by Myc. EMBO J 16:5672–5686CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gong Q, Zhou Z (2018) Nonsense-mediated mRNA decay of hERG mutations in long QT syndrome. Methods Mol Biol 1684:37–49CrossRefPubMedGoogle Scholar
  42. 42.
    Inácio A, Silva AL, Pinto J, Ji X, Morgado A, Almeida F, Faustino P, Lavinha J, Liebhaber SA, Romão L (2004) Nonsense mutations in close proximity to the initiation codon fail to trigger full nonsense-mediated mRNA decay. J Biol Chem 279:32170–32180CrossRefPubMedGoogle Scholar
  43. 43.
    Adhikary S, Peukert K, Karsunky H, Beuger V, Lutz W, Elsässer HP, Möröy T, Eilers M (2003) Miz1 is required for early embryonic development during gastrulation. Mol Cell Biol 23:7648–7657CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Buyandelger B, Mansfield C, Kostin S, Choi O, Roberts AM, Ware JS, Mazzarotto F, Pesce F, Buchan R, Isaacson RL, Vouffo J, Gunkel S, Knöll G, McSweeney SJ, Wei H, Perrot A, Pfeiffer C, Toliat MR, Ilieva K, Krysztofinska E, López-Olañeta MM, Gómez-Salinero JM, Schmidt A, Ng KE, Teucher N, Chen J, Teichmann M, Eilers M, Haverkamp W, Regitz-Zagrosek V, Hasenfuss G, Braun T, Pennell DJ, Gould I, Barton PJ, Lara-Pezzi E, Schäfer S, Hübner N, Felkin LE, O’Regan DP, Brand T, Milting H, Nürnberg P, Schneider MD, Prasad S, Petretto E, Knöll R (2015) ZBTB17 (MIZ1) is important for the cardiac stress response and a novel candidate gene for cardiomyopathy and heart failure. Circ Cardiovasc Genet 8:643–652CrossRefPubMedGoogle Scholar
  45. 45.
    Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403CrossRefPubMedGoogle Scholar
  46. 46.
    Knöll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111:943–955CrossRefPubMedGoogle Scholar
  47. 47.
    Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG, Chrisco MA, Murphy RT, Lurie PR, Schwartz RJ, Elliott PM, Vatta M, McKenna W, Towbin JA, Bowles NE (2003) Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 80:207–215CrossRefPubMedGoogle Scholar
  48. 48.
    Lorenzen-Schmidt I, Stuyvers BD, ter Keurs HE, Date MO, Hoshijima M, Chien KR, McCulloch AD, Omens JH (2005) Young MLP deficient mice show diastolic dysfunction before the onset of dilated cardiomyopathy. J Mol Cell Cardiol 39:241–250CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li RG, Li L, Qiu XB, Yuan F, Xu L, Li X, Xu YJ, Jiang WF, Jiang JQ, Liu X, Fang WY, Zhang M, Peng LY, Qu XK, Yang YQ (2013) GATA4 loss-of-function mutation underlies familial dilated cardiomyopathy. Biochem Biophys Res Commun 439:591–596CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang XL, Dai N, Tang K, Chen YQ, Chen W, Wang J, Zhao CM, Yuan F, Qiu XB, Qu XK, Yang YQ, Xu YW (2015) GATA5 loss-of-function mutation in familial dilated cardiomyopathy. Int J Mol Med 35:763–770CrossRefPubMedGoogle Scholar
  51. 51.
    Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li RG, Xu YJ, Zhang M, Fang WY, Qu XK, Yang YQ, Qiu XB (2014) GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. Int J Mol Med 34:1315–1322CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang XL, Qiu XB, Yuan F, Wang J, Zhao CM, Li RG, Xu L, Xu YJ, Shi HY, Hou XM, Qu XK, Xu YW, Yang YQ (2015) TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochem Biophys Res Commun 459:166–171CrossRefPubMedGoogle Scholar
  53. 53.
    Xu JH, Gu JY, Guo YH, Zhang H, Qiu XB, Li RG, Shi HY, Liu H, Yang XX, Xu YJ, Qu XK, Yang YQ (2017) Prevalence and spectrum of NKX2-5 mutations associated with sporadic adult-onset dilated cardiomyopathy. Int Heart J 58:521–529CrossRefPubMedGoogle Scholar
  54. 54.
    Yuan F, Qiu ZH, Wang XH, Sun YM, Wang J, Li RG, Liu H, Zhang M, Shi HY, Zhao L, Jiang WF, Liu X, Qiu XB, Qu XK, Yang YQ (2017) MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. Clin Chem Lab Med. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Min Sun
    • 1
  • Jun Wang
    • 1
    Email author
  • Ying-Jia Xu
    • 2
  • Xin-Hua Wang
    • 3
  • Fang Yuan
    • 4
  • Hua Liu
    • 5
  • Ruo-Gu Li
    • 5
  • Min Zhang
    • 5
  • Yan-Jie Li
    • 5
  • Hong-Yu Shi
    • 5
  • Liang Zhao
    • 5
  • Xing-Biao Qiu
    • 5
  • Xin-Kai Qu
    • 5
  • Yi-Qing Yang
    • 5
    • 6
    • 7
    Email author
  1. 1.Department of Cardiology, Shanghai Jing’an District Central HospitalFudan UniversityShanghaiChina
  2. 2.Department of Cardiology, The Fifth People′s Hospital of ShanghaiFudan UniversityShanghaiChina
  3. 3.Department of Cardiology, School of Medicine, Renji HospitalShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Department of Emergency Medicine, School of Medicine, Shanghai Tongren HospitalShanghai Jiao Tong UniversityShanghaiChina
  5. 5.Department of Cardiology, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
  6. 6.Department of Cardiovascular Research Laboratory, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
  7. 7.Department of Central Laboratory, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations