Advertisement

Heart and Vessels

, Volume 32, Issue 12, pp 1513–1522 | Cite as

Clinical implications of eicosapentaenoic acid/arachidonic acid ratio (EPA/AA) in adult patients with congenital heart disease

  • Miki Kanoh
  • Kei Inai
  • Tokuko Shinohara
  • Hirofumi Tomimatsu
  • Toshio Nakanishi
Original Article

Abstract

Recent studies showed that a low ratio between the levels of eicosapentaenoic acid and those of arachidonic acid (EPA/AA) is associated with higher incidence of coronary artery disease and poor prognosis of heart failure, arrhythmia, and cardiac sudden death. However, the clinical implications of EPA/AA in adult patients with congenital heart disease remain unclear. We aimed to assess the prognostic value of EPA/AA regarding cardiac events in adult patients with congenital heart disease. We measured the serum levels of eicosapentaenoic acid and arachidonic acid in 130 adult patients (median age, 31 years) stratified into two groups according to their EPA/AA (low, ≤0.22; high, >0.22). We prospectively analyzed the association between EPA/AA and incidence of cardiac events during a mean observation period of 15 months, expressed in terms of hazard ratio (HR) with 95% confidence interval (95% CI). In the subgroup of patients with biventricular circulation (2VC) (n = 76), we analyzed the same clinical endpoints. In our study population, EPA/AA was not associated with the incidence of arrhythmic events (HR, 1.52; 95% CI, 0.82–2.85; p = 0.19), but low EPA/AA was a predictor of heart failure hospitalization (HR, 2.83; 95% CI, 1.35–6.30; p < 0.01). Among patients with 2VC, an EPA/AA of ≤0.25 was associated with a significantly higher risk of arrhythmic events (HR, 2.55; 95% CI, 1.11–6.41; p = 0.03) and heart failure hospitalization (HR, 5.20; 95% CI, 1.78–18.1; p < 0.01). EPA/AA represents a useful predictor of cardiac events in adult patients with congenital heart disease.

Keywords

Eicosapentaenoic acid/arachidonic acid ratio (EPA/AA) Adult congenital heart disease n-3 polyunsaturated fatty acid (PUFA) Heart failure Arrhythmia 

Notes

Acknowledgments

We would like to thank Editage (www.editage.jp) for English language editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent was not required.

Submission declaration and verification

The results of this study were presented at the American Heart Association (AHA) 2015 Scientific Sessions, Orlando, FL, USA, November 7–11, 2015.

References

  1. 1.
    Burr ML, Fehily AM, Gilbert JF, Rogers S, Holliday RM, Sweetnam PM, Elwood PC, Deadman NM (1989) Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 2:757–761CrossRefPubMedGoogle Scholar
  2. 2.
    (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 354:447–455Google Scholar
  3. 3.
    Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, EPA Japan lipid intervention study (JELIS) Investigators (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369:1090–1098CrossRefPubMedGoogle Scholar
  4. 4.
    Bang HO, Dyerberg J, Nielsen AB (1971) Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet 1:1143–1145CrossRefPubMedGoogle Scholar
  5. 5.
    Domei T, Yokoi H, Kuramitsu S, Soga Y, Arita T, Ando K, Shirai S, Kondo K, Sakai K, Goya M, Iwabuchi M, Ueeda M, Nobuyoshi M (2012) Ratio of serum n-3 to n-6 polyunsaturated fatty acids and the incidence of major adverse cardiac events in patients undergoing percutaneous coronary intervention. Circ J 76:423–429CrossRefPubMedGoogle Scholar
  6. 6.
    Ninomiya T, Nagata M, Hata J, Hirakawa Y, Ozawa M, Yoshida D, Ohara T, Kishimoto H, Mukai N, Fukuhara M, Kitazono T, Kiyohara Y (2013) Association between ratio of serum eicosapentaenoic acid to arachidonic acid and risk of cardiovascular disease: the Hisayama Study. Atherosclerosis 231:261–267CrossRefPubMedGoogle Scholar
  7. 7.
    Sakamoto A, Saotome M, Hosoya N, Kageyama S, Yoshizaki T, Takeuchi R, Murata K, Nawada R, Onodera T, Takizawa A, Satoh H, Hayashi H (2016) Aberrant serum polyunsaturated fatty acids profile is relevant with acute coronary syndrome. Heart Vessel 31:1209–1217CrossRefGoogle Scholar
  8. 8.
    Mozaffarian D, Lemaitre RN, King IB, Song X, Spiegelman D, Sacks FM, Rimm EB, Siscovick DS (2011) Circulating long-chain ω-3 fatty acids and incidence of congestive heart failure in older adults: the cardiovascular health study: a cohort study. Ann Intern Med 155:160–170CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hara M, Sakata Y, Nakatani D, Suna S, Usami M, Matsumoto S, Hamasaki T, Doi Y, Nishino M, Sato H, Kitamura T, Nanto S, Hori M, Komuro I, Osaka Acute Coronary Insufficiency Study (OACIS) Investigators (2013) Low levels of serum n-3 polyunsaturated fatty acids are associated with worse heart failure-free survival in patients after acute myocardial infarction. Circ J 77:153–162CrossRefPubMedGoogle Scholar
  10. 10.
    Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, Lucci D, Nicolosi GL, Porcu M, Tognoni G, Gissi-HF Investigators (2008) Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372:1223–1230CrossRefPubMedGoogle Scholar
  11. 11.
    Nodari S, Triggiani M, Campia U, Manerba A, Milesi G, Cesana BM, Gheorghiade M, Dei Cas L (2011) Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol 57:870–879CrossRefPubMedGoogle Scholar
  12. 12.
    Doi M, Nosaka K, Miyoshi T, Iwamoto M, Kajiya M, Okawa K, Nakayama R, Takagi W, Takeda K, Hirohata S, Ito H (2014) Early eicosapentaenoic acid treatment after percutaneous coronary intervention reduces acute inflammatory responses and ventricular arrhythmias in patients with acute myocardial infarction: a randomized, controlled study. Int J Cardiol 176:577–582CrossRefPubMedGoogle Scholar
  13. 13.
    London B, Albert C, Anderson ME, Giles WR, Van Wagoner DR, Balk E, Billman GE, Chung M, Lands W, Leaf A, McAnulty J, Martens JR, Costello RB, Lathrop DA (2007) Omega-3 fatty acids and cardiac arrhythmias: prior studies and recommendations for future research. Circulation 116:e320–e335CrossRefPubMedGoogle Scholar
  14. 14.
    Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau J (2006) n-3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 84:5–17PubMedGoogle Scholar
  15. 15.
    Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J (2002) Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 346:1113–1118CrossRefPubMedGoogle Scholar
  16. 16.
    Tanaka K, Ishikawa Y, Yokoyama M, Origasa H, Matsuzaki M, Saito Y, Matsuzawa Y, Sasaki J, Oikawa S, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, JELIS Investigators Japan (2008) Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke 39:2052–2058CrossRefPubMedGoogle Scholar
  17. 17.
    Hishikari K, Kimura S, Yamakami Y, Kojima K, Sagawa Y, Otani H, Sugiyama T, Kuwahara T, Hikita H, Takahashi A, Isobe M (2015) The prognostic value of the serum eicosapentaenoic acid to arachidonic acid ratio in relation to clinical outcomes after endovascular therapy in patients with peripheral artery disease caused by femoropopliteal artery lesions. Atherosclerosis 239:583–588CrossRefPubMedGoogle Scholar
  18. 18.
    Gautam M, Izawa A, Shiba Y, Motoki H, Takeuchi T, Okada A, Tomita T, Miyashita Y, Koyama J, Ikeda U (2014) Importance of fatty acid compositions in patients with peripheral arterial disease. PLoS One 9:e107003CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Madsen T, Christensen JH, Svensson M, Witt PM, Toft E, Schmidt EB (2011) Marine n-3 polyunsaturated fatty acids in patients with end-stage renal failure and in subjects without kidney disease: a comparative study. J Ren Nutr 21:169–175CrossRefPubMedGoogle Scholar
  20. 20.
    Yanagisawa N, Shimada K, Miyazaki T, Kume A, Kitamura Y, Ichikawa R, Ohmura H, Kiyanagi T, Hiki M, Fukao K, Sumiyoshi K, Hirose K, Matsumori R, Takizawa H, Fujii K, Mokuno H, Inoue N, Daida H (2010) Polyunsaturated fatty acid levels of serum and red blood cells in apparently healthy Japanese subjects living in an urban area. J Atheroscler Thromb 17:285–294CrossRefPubMedGoogle Scholar
  21. 21.
    Fedor D, Kelley DS (2009) Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 12:138–146CrossRefPubMedGoogle Scholar
  22. 22.
    Lin PY, Mischoulon D, Freeman MP, Matsuoka Y, Hibbeln J, Belmaker RH, Su KP (2012) Are omega-3 fatty acids antidepressants or just mood-improving agents? The effect depends upon diagnosis, supplement preparation, and severity of depression. Mol Psychiatry 17:1161–1163CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    (2007) Ministry of Agriculture, Forestry and Fisheries. http://www.jfa.maff.go.jp/j/kikaku/wpaper/h22_h/trend/1/t1_2_1_1.html. Accessed on 10 Oct 2016
  24. 24.
    Donadio JV Jr, Larson TS, Bergstralh EJ, Grande JP (2001) A randomized trial of high-dose compared with low-dose omega-3 fatty acids in severe IgA nephropathy. J Am Soc Nephrol 12:791–799PubMedGoogle Scholar
  25. 25.
    Grimm H, Mertes N, Goeters C, Schlotzer E, Mayer K, Grimminger F, Fürst P (2006) Improved fatty acid and leukotriene pattern with a novel lipid emulsion in surgical patients. Eur J Nutr 45:55–60CrossRefPubMedGoogle Scholar
  26. 26.
    Rychik J, Gui-Yang S (2002) Relation of mesenteric vascular resistance after Fontan operation and protein-losing enteropathy. Am J Cardiol 90:672–674CrossRefPubMedGoogle Scholar
  27. 27.
    Rychik J (2007) Protein-losing enteropathy after Fontan operation. Congenit Heart Dis 2:288–300CrossRefPubMedGoogle Scholar
  28. 28.
    Miura S, Asakura H, Morishita T, Kobayashi K, Morita A, Tsuchiya M (1981) Study on fat absorption and plasma fatty acid composition in patients with protein-losing enteropathy from view point of disorders of intestinal lymphatics. Nihon Shokakibyo Gakkai Zasshi 78:2112–2121 (Article in Japanese) PubMedGoogle Scholar
  29. 29.
    Matsuzaki M, Yokoyama M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, Matsuzawa Y, Investigators JELIS (2009) Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease. Circ J 73:1283–1290CrossRefPubMedGoogle Scholar
  30. 30.
    Harada M, Van Wagoner DR, Nattel S (2015) Role of inflammation in atrial fibrillation pathophysiology and management. Circ J 79:495–502CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Virtanen JK, Mursu J, Voutilainen S, Tuomainen TP (2009) Serum long-chain n-3 polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. Circulation 120:2315–2321CrossRefPubMedGoogle Scholar
  32. 32.
    Nodari S, Triggiani M, Campia U, Manerba A, Milesi G, Cesana BM, Gheorghiade M, Dei Cas L (2011) n-3 polyunsaturated fatty acids in the prevention of atrial fibrillation recurrences after electrical cardioversion: a prospective, randomized study. Circulation 124:1100–1106CrossRefPubMedGoogle Scholar
  33. 33.
    Kumar S, Sutherland F, Morton JB, Lee G, Morgan J, Wong J, Eccleston DE, Voukelatos J, Garg ML, Sparks PB (2012) Long-term omega-3 polyunsaturated fatty acid supplementation reduces the recurrence of persistent atrial fibrillation after electrical cardioversion. Heart Rhythm 9:483–491CrossRefPubMedGoogle Scholar
  34. 34.
    Heydari B, Abdullah S, Pottala JV, Shah R, Abbasi S, Mandry D, Francis SA, Lumish H, Ghoshhajra BB, Hoffmann U, Appelbaum E, Feng JH, Blankstein R, Steigner M, McConnell JP, Harris W, Antman EM, Jerosch-Herold M, Kwong RY (2016) Effect of omega-3 acid ethyl esters on left ventricular remodeling after acute myocardial infarction: the OMEGA-REMODEL randomized clinical trial. Circulation 134:378–391CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pepe S, McLennan PL (2002) Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation 105:2303–2308CrossRefPubMedGoogle Scholar
  36. 36.
    Stalenhoef AF, de Graaf J, Wittekoek ME, Bredie SJ, Demacker PN, Kastelein JJ (2000) The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia. Atherosclerosis 153:129–138CrossRefPubMedGoogle Scholar
  37. 37.
    Calder PC (2015) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta 1851:469–484CrossRefPubMedGoogle Scholar
  38. 38.
    Yang LG, Song ZX, Yin H, Wang YY, Shu GF, Lu HX, Wang SK, Sun GJ (2016) Low n-6/n-3 PUFA ratio improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source. Lipids 51:49–59CrossRefPubMedGoogle Scholar
  39. 39.
    Harbaugh MP, Manuck SB, Jennings JR, Conklin SM, Yao JK, Muldoon MF (2013) Long-chain, n-3 fatty acids and physical activity—independent and interactive associations with cardiac autonomic control. Int J Cardiol 167:2102–2107CrossRefPubMedGoogle Scholar
  40. 40.
    Nishimura M, Nanbu A, Komori T, Ohtsuka K, Takahashi H, Yoshimura M (2000) Eicosapentaenoic acid stimulates nitric oxide production and decreases cardiac noradrenaline in diabetic rats. Clin Exp Pharmacol Physiol 27:618–624CrossRefPubMedGoogle Scholar
  41. 41.
    Abuissa H, O’Keefe JH Jr, Harris W, Lavie CJ (2005) Autonomic function, omega-3, and cardiovascular risk. Chest 127:1088–1091CrossRefPubMedGoogle Scholar
  42. 42.
    Mozaffarian D, Geelen A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB (2005) Effect of fish oil on heart rate in humans: a meta-analysis of randomized controlled trials. Circulation 112:1945–1952CrossRefPubMedGoogle Scholar
  43. 43.
    Takahashi M, Myojo M, Watanabe A, Kiyosue A, Kimura K, Ando J, Hirata Y, Komuro I (2015) Effect of purified eicosapentaenoic acid on red cell distribution width in patients with ischemic heart disease. Heart Vessels 30:587–594CrossRefPubMedGoogle Scholar
  44. 44.
    Itakura H, Yokoyama M, Matsuzaki M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, Matsuzawa Y, JELIS Investigators (2011) Relationships between plasma fatty acid composition and coronary artery disease. J Atheroscler Thromb 18:99–107CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Miki Kanoh
    • 1
  • Kei Inai
    • 1
  • Tokuko Shinohara
    • 1
  • Hirofumi Tomimatsu
    • 1
  • Toshio Nakanishi
    • 1
  1. 1.Division of Adult Congenital Heart Disease Pathophysiology and Life-long Care, Department of Pediatric CardiologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations