Advertisement

Heart and Vessels

, Volume 32, Issue 8, pp 932–943 | Cite as

Impact of decreased serum albumin levels on acute kidney injury in patients with acute decompensated heart failure: a potential association of atrial natriuretic peptide

  • Yoichi Takaya
  • Fumiki YoshiharaEmail author
  • Hiroyuki Yokoyama
  • Hideaki Kanzaki
  • Masafumi Kitakaze
  • Yoichi Goto
  • Toshihisa Anzai
  • Satoshi Yasuda
  • Hisao Ogawa
  • Yuhei Kawano
  • Kenji Kangawa
Original Article

Abstract

Although hypoalbuminemia at admission is a risk for acute kidney injury (AKI) and mortality in patients with acute decompensated heart failure (ADHF), the clinical significance of decreased serum albumin levels (DAL) during ADHF therapy has not been elucidated. This study aimed to evaluate whether DAL was associated with AKI, and whether intravenous atrial natriuretic peptide (ANP) administration, which provides an effective treatment for ADHF but promotes albumin extravasation, was associated with DAL and AKI. A total of 231 consecutive patients with ADHF were enrolled. AKI was defined as ≥0.3 mg/dl absolute or 1.5-fold increase in serum creatinine levels within 48 h. AKI occurred in 73 (32%) of the 231 patients during ADHF therapy. The median value of decreases in serum albumin levels was 0.3 g/dl at 7 days after admission. When DAL was defined as ≥0.3 g/dl decrease in serum albumin levels, DAL occurred in 113 patients, and was independently associated with AKI. Of the 231 patients, 73 (32%) were treated with intravenous ANP. DAL occurred more frequently in patients receiving ANP than in those not receiving ANP (77 vs. 36%, p < 0.001), and ANP was independently associated with DAL. The incidence of AKI was higher in patients receiving ANP than in those not receiving ANP (48 vs. 24%, p < 0.001). ANP was independently associated with AKI. In conclusion, DAL is associated with AKI. Intravenous ANP administration may be one of the promoting factors of DAL, which leads to AKI, indicating a possible novel mechanism of AKI.

Keywords

Acute decompensated heart failure Acute kidney injury Albumin Atrial natriuretic peptide 

Notes

Compliance with ethical standards

Conflict of interest

This study was supported by the Program for Promotion of Fundamental Studies in Health Sciences of the Pharmaceuticals and Medical Devices Agency in Japan.

References

  1. 1.
    Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO, DiCapua P, Krumholz HM (2006) Renal impairment and outcomes in heart failure: systemic review and meta-analysis. J Am Coll Cardiol 47:1987–1996CrossRefPubMedGoogle Scholar
  2. 2.
    Metra M, Nodari S, Parrinello G, Bordonali T, Bugatti S, Danesi R, Fontanella B, Lombardi C, Milani P, Verzura G, Cotter G, Dittrich H, Massie BM, Dei Cas L (2008) Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance. Eur J Heart Fail 10:188–195CrossRefPubMedGoogle Scholar
  3. 3.
    Forman DE, Butler J, Wang Y, Abraham WT, O’Connor CM, Gottlieb SS, Loh E, Massie BM, Rich MW, Stevenson LW, Young JB, Krumholz HM (2004) Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol 43:61–67CrossRefPubMedGoogle Scholar
  4. 4.
    Damman K, Navis G, Voors AA, Asselbergs FW, Smilde TD, Cleland JG, van Veldhuisen DJ, Hillege HL (2007) Worsening renal function and prognosis in heart failure: systemic review and meta-analysis. J Card Fail 13:599–608CrossRefPubMedGoogle Scholar
  5. 5.
    Ito M, Doi K, Takahashi M, Koyama K, Myojo M, Hosoya Y, Kiyosue A, Ando J, Noiri E, Yahagi N, Hirata Y, Komuro I (2016) Plasma neutrophil gelatinase-associated lipocalin predicts major adverse cardiovascular events after cardiac care unit discharge. J Cardiol 67:184–191CrossRefPubMedGoogle Scholar
  6. 6.
    Matsue Y, Shiraishi A, Kagiyama N, Yoshida K, Kume T, Okura H, Suzuki M, Matsumura A, Yoshida K, Hashimoto Y (2016) Renal function on admission modifies prognostic impact of diuretics in acute heart failure: a propensity score matched and interaction analysis. Heart Vessels 31:1980–1987CrossRefPubMedGoogle Scholar
  7. 7.
    Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP (2010) Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122:265–272CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, Piovanelli B, Carubelli V, Bugatti S, Lombardi C, Cotter G, Dei Cas L (2012) Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail 5:54–62CrossRefPubMedGoogle Scholar
  9. 9.
    Takaya Y, Yoshihara F, Yokoyama H, Kanzaki H, Kitakaze M, Goto Y, Anzai T, Yasuda S, Ogawa H, Kawano Y (2016) Impact of onset time of acute kidney injury on outcomes in patients with acute decompensated heart failure. Heart Vessels 31:60–65CrossRefPubMedGoogle Scholar
  10. 10.
    Takaya Y, Yoshihara F, Yokoyama H, Kanzaki H, Kitakaze M, Goto Y, Anzai T, Yasuda S, Ogawa H, Kawano Y (2015) Risk stratification of acute kidney injury using blood urea nitrogen/creatinine ratio in patients with acute decompensated heart failure. Circ J 79:1520–1525CrossRefPubMedGoogle Scholar
  11. 11.
    Clarke MM, Dorsch MP, Kim S, Aaronson KD, Koelling TM, Bleske BE (2013) Baseline albumin is associated with worsening renal function in patients with acute decompensated heart failure receiving continuous infusion loop diuretics. Pharmacotherapy 33:583–588CrossRefPubMedGoogle Scholar
  12. 12.
    Wiedermann CJ, Wiedermann W, Joannidis M (2010) Hypoalbuminemia and acute kidney injury: a meta-analysis of observational clinical studies. Intensive Care Med 36:1657–1665CrossRefPubMedGoogle Scholar
  13. 13.
    Horwich TB, Kalantar-Zadeh K, MacLellan RW, Fonarow GC (2008) Albumin levels predict survival in patients with systolic heart failure. Am Heart J 155:883–889CrossRefPubMedGoogle Scholar
  14. 14.
    Liu M, Chan CP, Yan BP, Zhang Q, Lam YY, Li RJ, Sanderson JE, Coats AJ, Sun JP, Yip GW, Yu CM (2012) Albumin levels predict survival in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 14:39–44CrossRefPubMedGoogle Scholar
  15. 15.
    Yamazoe M, Mizuno A, Nishi Y, Niwa K, Isobe M (2016) Serum alkaline phosphatase as a predictor of worsening renal function in patients with acute decompensated heart failure. J Cardiol 67:412–417CrossRefPubMedGoogle Scholar
  16. 16.
    Kangawa K, Matsuo H (1984) Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun 118:131–139CrossRefPubMedGoogle Scholar
  17. 17.
    Saito Y, Nakao K, Nishimura K, Sugawara A, Okumura K, Obata K, Sonoda R, Ban T, Yasue H, Imura H (1987) Clinical application of atrial natriuretic polypeptide in patients with congestive heart failure. Circulation 76:115–124CrossRefPubMedGoogle Scholar
  18. 18.
    Suwa M, Seino Y, Nomachi Y, Matsuki S, Funahashi K (2005) Multicenter prospective investigation on efficacy and safety of carperitide for acute heart failure in the ‘real world’ of therapy. Circ J 69:283–290CrossRefPubMedGoogle Scholar
  19. 19.
    Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709CrossRefPubMedGoogle Scholar
  20. 20.
    Curry FR (2005) Atrial natriuretic peptide: an essential physiological regulator of transvascular fluid, protein transport, and plasma volume. J Clin Invest 115:1458–1461CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Curry FR, Rygh CB, Karlsen T, Wiig H, Adamson RH, Clark JF, Lin YC, Gassner B, Thorsen F, Moen I, Tenstad O, Kuhn M, Reed RK (2010) Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume. J Physiol 588:325–339CrossRefPubMedGoogle Scholar
  22. 22.
    Chen W, Gassner B, Borner S, Nikolaev VO, Schlegel N, Waschke J, Steinbronn N, Strasser R, Kuhn M (2012) Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway. Cardiovasc Res 93:141–151CrossRefPubMedGoogle Scholar
  23. 23.
    Nieminen MS, Bohm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G, Hasin Y, Lopez-Sendon J, Mebazaa A, Metra M, Rhodes A, Swedberg K, Priori SG, Garcia MA, Blanc JJ, Budaj A, Cowie MR, Dean V, Deckers J, Burgos EF, Lekakis J, Lindahl B, Mazzotta G, Morais J, Oto A, Smiseth OA, Garcia MA, Dickstein K, Albuquerque A, Conthe P, Crespo-Leiro M, Ferrari R, Follath F, Gavazzi A, Janssens U, Komajda M, Morais J, Moreno R, Singer M, Singh S, Tendera M, Thygesen K (2005) Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J 26:384–416CrossRefPubMedGoogle Scholar
  24. 24.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hanatani A, Shibata A, Kitada R, Iwata S, Matsumura Y, Doi A, Sugioka K, Takagi M, Yoshiyama M (2016) Administration of tolvaptan with reduction of loop diuretics ameliorates congestion with improving renal dysfunction in patients with congestive heart failure and renal dysfunction. Heart Vessels. doi: 10.1007/s00380-016-0872-4 Google Scholar
  26. 26.
    Uemura Y, Shibata R, Takemoto K, Uchikawa T, Koyasu M, Ishikawa S, Mitsuda T, Miura A, Imai R, Iwamiya S, Ozaki Y, Kato T, Miura T, Watarai M, Murohara T (2016) Clinical benefit of tolvaptan in patients with acute decompensated heart failure and chronic kidney disease. Heart Vessels 31:1643–1649CrossRefPubMedGoogle Scholar
  27. 27.
    Zamlauski-Tucker M, Cohen JJ (1988) Effect of substrate-free albumin on perfused rat kidney function. Ren Physiol 10:352–360PubMedGoogle Scholar
  28. 28.
    MacPhee PJ, Michel CC (1995) Fluid uptake from the renal medulla into the ascending vasa recta in anaesthetized rats. J Physiol 487:169–183CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hsu CW, Lin SL, Sun SF, Chu KA, Chung HM, Chang HW (2006) Comparison of the diuretic effect of furosemide mixed with human albumin or fresh frozen plasma for patients with hypoalbuminemia in the intensive care unit. J Nephrol 19:621–627PubMedGoogle Scholar
  30. 30.
    Zhang WJ, Frei B (2002) Albumin selectively inhibits TNF-alpha-induced expression of vascular cell adhesion molecule-1 in human aortic endothelial cells. Cardiovasc Res 55:820–829CrossRefPubMedGoogle Scholar
  31. 31.
    Quinlan GJ, Mumby S, Martin GS, Bernard GR, Gutteridge JM, Evans TW (2004) Albumin influences total plasma antioxidant capacity favorably in patients with acute lung injury. Crit Care Med 32:755–759CrossRefPubMedGoogle Scholar
  32. 32.
    Hesse B, Parving HH, Lund-Jacobsen H, Noer I (1976) Transcapillary escape rate of albumin and right atrial pressure in chronic congestive heart failure before and after treatment. Circ Res 39:358–362CrossRefPubMedGoogle Scholar
  33. 33.
    Dumont AE, Clauss RH, Reed GE, Tice DA (1963) Lymph drainage in patients with congestive heart failure. N Engl J Med 269:949–952CrossRefPubMedGoogle Scholar
  34. 34.
    Ando K, Ohtsu H, Uchida S, Kaname S, Arakawa Y, Fujita T (2014) Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomized, placebo-controlled trial. Lancet Diabetes Endocrinol 2:944–953CrossRefPubMedGoogle Scholar
  35. 35.
    Nielsen SE, Persson F, Frandsen E, Sugaya T, Hess G, Zdunek D, Shjoedt KJ, Parving HH, Rossing P (2012) Spironolactone diminishes urinary albumin excretion in patients with type 1 diabetes and microalbuminuria: a randomized placebo-controlled crossover study. Diabet Med 29:e184–e190CrossRefPubMedGoogle Scholar
  36. 36.
    Bernardi S, Toffoli B, Zennaro C, Bossi F, Losurdo P, Michelli A, Carretta R, Mulatero P, Fallo F, Veglio F, Fabris B (2015) Aldosterone effects on glomerular structure and function. J Renin Angiotensin Aldosterone Syst 16:730–738CrossRefPubMedGoogle Scholar
  37. 37.
    Jensen TB, Cheema MU, Szymiczek A, Damkier HH, Praetorius J (2015) Renal type a intercalated cells contain albumin in organelles with aldosterone-regulated abundance. PLoS One 10:e0124902CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sackner-Bernstein JD, Skopicki HA, Aaronson KD (2005) Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 111:1487–1491CrossRefPubMedGoogle Scholar
  39. 39.
    O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, McMurray JJ, Nieminen MS, Reist CJ, Rouleau JL, Swedberg K, Adams KF Jr, Anker SD, Atar D, Battler A, Botero R, Bohidar NR, Butler J, Clausell N, Corbalan R, Costanzo MR, Dahlstrom U, Deckelbaum LI, Diaz R, Dunlap ME, Ezekowitz JA, Feldman D, Felker GM, Fonarow GC, Gennevois D, Gottlieb SS, Hill JA, Hollander JE, Howlett JG, Hudson MP, Kociol RD, Krum H, Laucevicius A, Levy WC, Mendez GF, Metra M, Mittal S, Oh BH, Pareira NL, Ponikowski P, Tang WH, Tanomsup S, Teerlink JR, Triposkiadis F, Troughton RW, Voors AA, Whellan DJ, Zannad F, Califf RM (2011) Effects of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365:32–43CrossRefPubMedGoogle Scholar
  40. 40.
    Riter HG, Redfield MM, Burnett JC, Chen HH (2006) Nonhypotensive low-dose nesiritide has differential renal effects compared with standard-dose nesiritide in patients with acute decompensated heart failure and renal dysfunction. J Am Coll Cardiol 47:2334–2335CrossRefPubMedGoogle Scholar
  41. 41.
    Valente MA, Voors AA, Damman K, VanVeldhuisen DJ, Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Davison B, Cleland JG, Givertz MM, Bloomfield DM, Fiuzat M, Dittrich HC, Hillege HL (2014) Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J 35:1284–1293CrossRefPubMedGoogle Scholar
  42. 42.
    Damman K, Tang WH, Testani JM, McMurray JJ (2014) Terminology and definition of changes renal function in heart failure. Eur Heart J 35:3413–3416CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hata N, Seino Y, Tsutamoto T, Hiramitsu S, Kaneko N, Yoshikawa T, Yokoyama H, Tanaka K, Mizuno K, Nejima J, Kinoshita M (2008) Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: the PROTECT multicenter randomized controlled study. Circ J 72:1787–1793CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Yoichi Takaya
    • 1
  • Fumiki Yoshihara
    • 2
    Email author
  • Hiroyuki Yokoyama
    • 1
  • Hideaki Kanzaki
    • 1
  • Masafumi Kitakaze
    • 1
  • Yoichi Goto
    • 1
  • Toshihisa Anzai
    • 1
  • Satoshi Yasuda
    • 1
  • Hisao Ogawa
    • 1
  • Yuhei Kawano
    • 2
  • Kenji Kangawa
    • 3
  1. 1.Department of CardiologyNational Cerebral and Cardiovascular CenterSuitaJapan
  2. 2.Department of Hypertension and NephrologyNational Cerebral and Cardiovascular CenterSuitaJapan
  3. 3.Research InstituteNational Cerebral and Cardiovascular CenterSuitaJapan

Personalised recommendations