Advertisement

Heart and Vessels

, Volume 32, Issue 6, pp 768–776 | Cite as

Oral administration of the lactic acid bacterium Pediococcus acidilactici attenuates atherosclerosis in mice by inducing tolerogenic dendritic cells

  • Taiji Mizoguchi
  • Kazuyuki Kasahara
  • Tomoya YamashitaEmail author
  • Naoto Sasaki
  • Keiko Yodoi
  • Takuya Matsumoto
  • Takuo Emoto
  • Tomohiro Hayashi
  • Naoki Kitano
  • Naofumi Yoshida
  • Hilman Zulkifli Amin
  • Ken-ichi Hirata
Original Article

Abstract

The intestinal microbiota appears to play an important role in the development of atherosclerosis. We investigated the effect of the probiotic lactic acid bacterium Pediococcus acidilactici R037 on atherosclerosis using apolipoprotein E-deficient (ApoE −/−) mice. Six-week-old ApoE −/− mice were orally administered R037 six times a week. Mice treated with R037 for 12 weeks exhibited markedly attenuated atherosclerotic lesions in the aortic root (2.3 ± 0.15 × 105 µm2 vs. 3.3 ± 0.29 × 105 µm2, respectively; P < 0.01; n = 15–17 each group). The expression of Ki-67 in CD4+ T cells, the population of interferon γ-producing CD4+ T cells in the spleen, and pro-inflammatory cytokine production from splenic lymphocytes were significantly decreased in R037-treated mice. Interestingly, splenic dendritic cells (DCs) isolated from R037-treated mice suppressed CD4+ T-cell proliferation and pro-inflammatory cytokine production ex vivo, suggesting that R037 treatment induced tolerogenic DCs. Programmed cell death ligand 1 expression in DCs was significantly enhanced in R037-treated mice, which might explain the immunosuppressive effect of DCs at least in part. These results indicate that R037 attenuates atherosclerosis by inducing tolerogenic DCs, which suppress Th1-driven inflammation and the proliferative activity of CD4+ T cells. Our findings may provide a novel therapeutic approach for the prevention of atherosclerosis based on dietary supplementation with probiotics.

Keywords

Atherosclerosis Dendritic cells Probiotic Programmed death ligand 1 

Notes

Acknowledgements

We wish to thank Airo Tategaki and Tomohiro Ueda (Kaneka CO., Japan) for providing us with R037.

Compliance with ethical standards

Funding

This work was supported by Japan Society for the Promotion of Science KAKENHI Grant No. 24591114 (T. Y.), Takeda Scientific Foundation (T. Y. and N. S.), Mochida Memorial Foundation (T. Y.), Suzuken Memorial Foundation (T. Y. and N. S.), Senshin Medical Research Foundation (T. Y. and N. S.), Yakult Bioscience Research Foundation (T. Y.), Uehara Memorial Foundation (K. H. and N. S.), Hyogo Science and Technology Association (T. Y.), The Japanese Circulation Society Translational Research Foundation (K. H.), and Banyu Life Science Foundation International (K. K.).

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models. Nat Rev Immunol 8:802–815CrossRefPubMedGoogle Scholar
  2. 2.
    Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12:204–212CrossRefPubMedGoogle Scholar
  3. 3.
    Gupta S, Pablo AM, Jiang XC, Wang N, Tall AR, Schindler C (1997) IFN-γ potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99:2752–2761CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdry P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK, Klatzmann D, Tedgui A, Mallat Z (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12:178–180CrossRefPubMedGoogle Scholar
  5. 5.
    Ait-Oufella H, Sage AP, Mallat Z, Tedgui A (2014) Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 114:1640–1660CrossRefPubMedGoogle Scholar
  6. 6.
    Buono C PH, Uchida Y, Libby P, Sharpe AH, Lichtman AH (2004) B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 109:2009–2015CrossRefPubMedGoogle Scholar
  7. 7.
    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai I, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268CrossRefPubMedGoogle Scholar
  8. 8.
    Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, Kuchroo VK, Freeman GJ, Sharpe AH (2004) PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci U S A 101:10691–10696CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacher LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203:883–895CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bu DX, Tarrio M, Maganto-Garcia E, Stavrakis G, Tajima G, Lederer J, Jarolim P, Freeman GJ, Sharpe AH, Lichtman AH (2011) Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol 31:1100–1107CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A (2014) Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS One 9:e93280. doi: 10.1371/journal.pone.0093280.g001 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous clostridium species. Science 331:337–341CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Z KE, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, Mizoguchi T, Ogawa W, Hirata K (2016) Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb 23:908–921CrossRefPubMedGoogle Scholar
  16. 16.
    Emoto T, Yamashita T, Kobayashi T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Matsumoto T, Mizoguchi T, Ogawa W, Hirata K (2016) Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. doi: 10.1007/s00380-016-0841-y PubMedGoogle Scholar
  17. 17.
    Huang Y, Wang J, Quan G, Wang X, Yang L, Zhong (2014) Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice. Appl Environ Microbiol 80:7496–7504. doi: 10.1128/AEM.02926-14 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen L, Liu W, Li Y, Luo S, Liu Q, Zhong Y, Jian Z, Bao M (2013) Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process. Int Immunopharmacol 17:108–115CrossRefPubMedGoogle Scholar
  19. 19.
    Tsai CC, Lin PP, Hsieh YM, Zhang ZY, Wu HC, Huang CC (2014) Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. ScientificWorldJournal 2014:690752PubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang J, Zhang H, Chen X, Chen Y, Menghebilige, Bao Q (2012) Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J Dairy Sci 95:1645–1654CrossRefPubMedGoogle Scholar
  21. 21.
    Takata K, Kinoshita M, Okuno T, Moriya M, Kohda T, Honorat JA, Sugimoto T, Kumanogoh A, Kayama H, Takeda K, Sakoda S, Nakatsuji Y (2011) The lactic acid bacterium pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS One 6:e27644. doi: 10.1371/journal.pone.0027644 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sasaki N, Yamashita T, Takeda M, Shinohara M, Nakajima K, Tawa H, Usui T, Hirata K (2009) Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation 120:1996–2005CrossRefPubMedGoogle Scholar
  23. 23.
    Chai JG, Lechler RI (1997) Immobilized anti-CD3 mab induces anergy in murine naive and memory CD4+ T cells in vitro. Int immunol 9:935–944CrossRefPubMedGoogle Scholar
  24. 24.
    Manicassamy S, Pulendran B (2011) Dendritic cell control of tolerogenic responses. Immunol Rev 241:206–227CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dicks LM, Bites M (2010) Probiotic lactic acid bacteria in the gastro-intestinal tract: Health benefits, safety and mode of action. Benef Microbes 1:11–29CrossRefPubMedGoogle Scholar
  26. 26.
    Watanabe T, Hamada K, Tategaki A, Kishida H, Tanaka H, Kitano M, Miyamoto T (2009) Oral administration of lactic acid bacteria isolated from traditional south asian fermented milk ‘dahi’ inhibits the development of atopic dermatitis in NC/Nga mice. J Nutr Sci Vitaminol 55:271–278CrossRefPubMedGoogle Scholar
  27. 27.
    Fak F, Backhed F (2012) Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in ApoE –/– mice. PLoS One 7:e46837. doi: 10.1371/journal.pone.0046837 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: Pathogenic and regulatory pathways. Physiol Rev 86:515–581CrossRefPubMedGoogle Scholar
  29. 29.
    Taleb S TA, Mallat Z (2010) Interleukin-17: Friend or foe in atherosclerosis? Curr Opin Lipidol 21:404–408CrossRefPubMedGoogle Scholar
  30. 30.
    Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8:239–245CrossRefPubMedGoogle Scholar
  31. 31.
    Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, Yamazaki T, Auchinoclass H, Sayegh MH (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198:63–69CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Okumura K, Tsukamoto H, Tsuboi H, Hirayama H, Kamiya H, Watarai M, Ishiki R, Murohara T (2015) High HDL cholesterol level after treatment with pitavastatin is an important factor for regression in carotid intima-media thickness. Heart Vessels 30:154–161CrossRefPubMedGoogle Scholar
  33. 33.
    Nozue T, Yamamoto S, Tohyama S, Fukui K, Umezawa S, Onisi Y, Kunishima T, Sato A, Nozato T, Miyake S, Takeyama Y, Morino Y, Yamauchi T, Muramatsu T, Hirano T, Hibi K, Terashima M, Michishita I (2014) Impacts of age on coronary atherosclerosis and vascular response to statin therapy. Heart Vessels 29:456–463CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Taiji Mizoguchi
    • 1
  • Kazuyuki Kasahara
    • 1
  • Tomoya Yamashita
    • 1
    Email author
  • Naoto Sasaki
    • 1
  • Keiko Yodoi
    • 1
  • Takuya Matsumoto
    • 1
  • Takuo Emoto
    • 1
  • Tomohiro Hayashi
    • 1
  • Naoki Kitano
    • 1
  • Naofumi Yoshida
    • 1
  • Hilman Zulkifli Amin
    • 1
  • Ken-ichi Hirata
    • 1
  1. 1.Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan

Personalised recommendations