Heart and Vessels

, Volume 32, Issue 6, pp 668–673 | Cite as

Low circulating coenzyme Q10 during acute phase is associated with inflammation, malnutrition, and in-hospital mortality in patients admitted to the coronary care unit

  • Megumi Shimizu
  • Tetsuro Miyazaki
  • Atsutoshi Takagi
  • Yurina Sugita
  • Shoichiro Yatsu
  • Azusa Murata
  • Takao Kato
  • Shoko Suda
  • Shohei Ouchi
  • Tatsuro Aikawa
  • Masaru Hiki
  • Shuhei Takahashi
  • Makoto Hiki
  • Hidemori Hayashi
  • Takatoshi Kasai
  • Kazunori Shimada
  • Katsumi Miyauchi
  • Hiroyuki Daida
Original Article

Abstract

Coenzyme Q10 (CoQ10) has a potential role in the prevention and treatment of heart failure through improved cellular bioenergetics. In addition, it has antioxidant, free radical scavenging, and vasodilatory effects that may be beneficial. Although critical illness in intensive care unit is associated with decreased circulating CoQ10 levels, the clinical significance of CoQ10 levels during acute phase in the patients of cardiovascular disease remains unclear. We enrolled 257 consecutive cardiovascular patients admitted to the coronary care unit (CCU). Serum CoQ10 levels were measured after an overnight fast within 24 h of admission. We examined the comparison of serum CoQ10 levels between survivors and in-hospital mortalities in patients with cardiovascular disease. Serum CoQ10 levels during the acute phase in patients admitted to the CCU had similar independent of the diagnosis. CoQ10 levels were significantly lower in patients with in-hospital mortalities than in survivors (0.43 ± 0.19 vs. 0.55 ± 0.35 mg/L, P = 0.04). In patients admitted to the CCU, CoQ10 levels were negatively associated with age and C-reactive protein levels, and positively associated with body mass index, total cholesterol, and high-density lipoprotein cholesterol levels. Low CoQ10 levels correlated with low diastolic blood pressure. Multivariate logistic regression analysis demonstrated that low CoQ10 levels were an independent predictor of in-hospital mortality. Low serum CoQ10 levels during acute phase are significantly associated with cardiovascular risk and in-hospital mortality in patients admitted to the CCU.

Keywords

Coenzyme Q10 Coronary care unit Aging Malnutrition Inflammation 

References

  1. 1.
    Crane FL, Hatefi Y, Lester RL, Widmer C (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25(1):220–221CrossRefPubMedGoogle Scholar
  2. 2.
    Tian G, Sawashita J, Kubo H, Nishio SY, Hashimoto S, Suzuki N, Yoshimura H, Tsuruoka M, Wang Y, Liu Y, Luo H, Xu Z, Mori M, Kitano M, Hosoe K, Takeda T, Usami S, Higuchi K (2014) Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox Signal 20(16):2606–2620CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Folkers K, Vadhanavikit S, Mortensen SA (1985) Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci USA 82(3):901–904CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Munkholm H, Hansen HH, Rasmussen K (1999) Coenzyme Q10 treatment in serious heart failure. BioFactors 9(2–4):285–289CrossRefPubMedGoogle Scholar
  5. 5.
    Keogh A, Fenton S, Leslie C, Aboyoun C, Macdonald P, Zhao YC, Bailey M, Rosenfeldt F (2003) Randomised double-blind, placebo-controlled trial of coenzyme Q, therapy in class II and III systolic heart failure. Heart Lung Circ 12(3):135–141CrossRefPubMedGoogle Scholar
  6. 6.
    Rosenfeldt F, Marasco S, Lyon W, Wowk M, Sheeran F, Bailey M, Esmore D, Davis B, Pick A, Rabinov M, Smith J, Nagley P, Pepe S (2005) Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vitro contractility of myocardial tissue. J Thorac Cardiovasc Surg 129(1):25–32CrossRefPubMedGoogle Scholar
  7. 7.
    Dai YL, Luk TH, Yiu KH, Wang M, Yip PM, Lee SW, Li SW, Tam S, Fong B, Lau CP, Siu CW, Tse HF (2011) Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: a randomized controlled trial. Atherosclerosis 216(2):395–401CrossRefPubMedGoogle Scholar
  8. 8.
    Kumar A, Singh RB, Saxena M, Niaz MA, Josh SR, Chattopadhyay P, Mechirova V, Pella D, Fedacko J (2007) Effect of carni Q-gel (ubiquinol and carnitine) on cytokines in patients with heart failure in the Tishcon study. Acta Cardiol 62(4):349–354CrossRefPubMedGoogle Scholar
  9. 9.
    Kaikkonen J, Tuomainen TP, Nyyssonen K, Salonen JT (2002) Coenzyme Q10: absorption, antioxidative properties, determinants, and plasma levels. Free Radic Res 36(4):389–397CrossRefPubMedGoogle Scholar
  10. 10.
    Lee BJ, Lin YC, Huang YC, Ko YW, Hsia S, Lin PT (2012) The relationship between coenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronary artery disease. ScientificWorldJournal 2012:792756PubMedPubMedCentralGoogle Scholar
  11. 11.
    Molyneux SL, Florkowski CM, George PM, Pilbrow AP, Frampton CM, Lever M, Richards AM (2008) Coenzyme Q10: an independent predictor of mortality in chronic heart failure. J Am Coll Cardiol 52(18):1435–1441CrossRefPubMedGoogle Scholar
  12. 12.
    Sarter B (2002) Coenzyme Q10 and cardiovascular disease: a review. J Cardiovasc Nurs 16(4):9–20CrossRefPubMedGoogle Scholar
  13. 13.
    Tang PH, Miles MV, DeGrauw A, Hershey A, Pesce A (2001) HPLC analysis of reduced and oxidized coenzyme Q(10) in human plasma. Clin Chem 47(2):256–265PubMedGoogle Scholar
  14. 14.
    Lu J, Frank EL (2007) Measurement of coenzyme Q10 in clinical practice. Clin Chim Acta 384(1–2):180–181CrossRefPubMedGoogle Scholar
  15. 15.
    Sakamoto N, Hoshino Y, Misaka T, Mizukami H, Suzuki S, Sugimoto K, Yamaki T, Kunii H, Nakazato K, Suzuki H, Saitoh S, Takeishi Y (2014) Serum tenascin-C level is associated with coronary plaque rupture in patients with acute coronary syndrome. Heart Vessels 29(2):165–170CrossRefPubMedGoogle Scholar
  16. 16.
    Nakamura A, Miura S, Shiga Y, Norimatsu K, Miyase Y, Suematsu Y, Mitsutake R, Saku K (2015) Is pentraxin 3 a biomarker, a player, or both in the context of coronary atherosclerosis and metabolic factors? Heart Vessels 30(6):752–761CrossRefPubMedGoogle Scholar
  17. 17.
    Lee BJ, Huang YC, Chen SJ, Lin PT (2012) Effects of coenzyme Q10 supplementation on inflammatory markers (high-sensitivity C-reactive protein, interleukin-6, and homocysteine) in patients with coronary artery disease. Nutrition 28(7–8):767–772CrossRefPubMedGoogle Scholar
  18. 18.
    Gordon BR, Parker TS, Levine DM, Saal SD, Wang JC, Sloan BJ, Barie PS, Rubin AL (2001) Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients. Crit Care Med 29(8):1563–1568CrossRefPubMedGoogle Scholar
  19. 19.
    Chien JY, Jerng JS, Yu CJ, Yang PC (2005) Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis. Crit Care Med 33(8):1688–1693CrossRefPubMedGoogle Scholar
  20. 20.
    Lagrost L, Girard C, Grosjean S, Masson D, Deckert V, Gautier T, Debomy F, Vinault S, Jeannin A, Labbe J, Bonithon-Kopp C (2014) Low preoperative cholesterol level is a risk factor of sepsis and poor clinical outcome in patients undergoing cardiac surgery with cardiopulmonary bypass. Crit Care Med 42(5):1065–1073CrossRefPubMedGoogle Scholar
  21. 21.
    Marinari S, Manigrasso MR, De Benedetto F (2013) Effects of nutraceutical diet integration, with coenzyme Q10 (Q-Ter multicomposite) and creatine, on dyspnea, exercise tolerance, and quality of life in COPD patients with chronic respiratory failure. Multidiscip Respir Med 8(1):40CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    De Pinieux G, Chariot P, Ammi-Said M, Louarn F, Lejonc JL, Astier A, Jacotot B, Gherardi R (1996) Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol 42(3):333–337CrossRefPubMedGoogle Scholar
  23. 23.
    Dai YL, Luk TH, Siu CW, Yiu KH, Chan HT, Lee SW, Li SW, Tam S, Fong B, Lau CP, Tse HF (2010) Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovasc Toxicol 10(2):130–138CrossRefPubMedGoogle Scholar
  24. 24.
    Zlatohlavek L, Vrablik M, Grauova B, Motykova E, Ceska R (2012) The effect of coenzyme Q10 in statin myopathy. Neuro Endocrinol Lett 33(Suppl 2):98–101PubMedGoogle Scholar
  25. 25.
    Celik T, Bugan B (2011) Unending debate: statin dilemma in the management of heart failure. Int J Cardiol 146(1):92–93CrossRefPubMedGoogle Scholar
  26. 26.
    Ashton E, Windebank E, Skiba M, Reid C, Schneider H, Rosenfeldt F, Tonkin A, Krum H (2011) Why did high-dose rosuvastatin not improve cardiac remodeling in chronic heart failure? Mechanistic insights from the UNIVERSE study. Int J Cardiol 146(3):404–407CrossRefPubMedGoogle Scholar
  27. 27.
    Lyons KS, McVeigh GE, Harbinson MT (2011) Statins in heart failure-where do we stand? Cardiovasc Drugs Ther 25(1):99–104CrossRefPubMedGoogle Scholar
  28. 28.
    De Gennaro L, Brunetti ND, Correale M, Buquicchio F, Caldarola P, Di Biase M (2014) Statin therapy in heart failure: for good, for bad, or indifferent? Curr Atheroscler Rep 16(1):377CrossRefPubMedGoogle Scholar
  29. 29.
    Toyama K, Sugiyama S, Oka H, Iwasaki Y, Sumida H, Tanaka T, Tayama S, Jinnouchi H, Ogawa H (2014) Statins combined with exercise are associated with the increased renal function mediated by high-molecular-weight adiponectin in coronary artery disease patients. J Cardiol 64(2):91–97CrossRefPubMedGoogle Scholar
  30. 30.
    Cocchi MN, Giberson B, Berg K, Salciccioli JD, Naini A, Buettner C, Akuthota P, Gautam S, Donnino MW (2012) Coenzyme Q10 levels are low and associated with increased mortality in post-cardiac arrest patients. Resuscitation 83(8):991–995CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Megumi Shimizu
    • 1
  • Tetsuro Miyazaki
    • 1
  • Atsutoshi Takagi
    • 1
  • Yurina Sugita
    • 1
  • Shoichiro Yatsu
    • 1
  • Azusa Murata
    • 1
  • Takao Kato
    • 1
  • Shoko Suda
    • 1
  • Shohei Ouchi
    • 1
  • Tatsuro Aikawa
    • 1
  • Masaru Hiki
    • 1
  • Shuhei Takahashi
    • 1
  • Makoto Hiki
    • 1
  • Hidemori Hayashi
    • 1
  • Takatoshi Kasai
    • 1
  • Kazunori Shimada
    • 1
  • Katsumi Miyauchi
    • 1
  • Hiroyuki Daida
    • 1
  1. 1.Department of Cardiovascular MedicineJuntendo University School of MedicineTokyoJapan

Personalised recommendations