Skip to main content

Advertisement

Log in

Physical inactivity increases endostatin and osteopontin in patients with coronary artery disease

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The balance between the angiostatic factor endostatin (ES) and angiogenic factor osteopontin (OPN) is essential in physiological and pathological angiogenesis. Several circumstances might influence this equilibrium and are of distinct interest when investigating mechanisms in coronary artery disease (CAD). The present explorative cross-sectional study was to investigate the influence of physical inactivity on ES and OPN levels in 181 male and 71 female patients with angiographycally verified CAD. Anamnestic and laboratory data were collected; ES was measured in serum and OPN in plasma by ELISA. Univariate analysis of variance was used to test for the influence of physical activity on ES and OPN levels and age, BMI, sex and diabetes status were included as covariates. ES and OPN intercorrelated significantly (r = 0.42; p < 0.001). ES and OPN decreased significantly in response to increasing activity level of patients suffering CAD (F = 5.5; p < 0.001 and F = 3.6; p < 0.01 resp.). This study is the first to show a linear decrease in ES and OPN levels in CAD patients depending on the degree of physical activity undergone. Lower levels of ES and OPN in physically active patients might be a sign of increased angiogenesis and decreased inflammation and calcifying activity and therefore contribute to the understanding of the damaging effect of physical inactivity in cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sponder M, Fritzer-Szekeres M, Marculescu R, Litschauer B, Strametz-Juranek J (2014) A new coronary artery disease grading system correlates with numerous routine parameters that were associated with atherosclerosis: a grading system for coronary artery disease severity. Vasc Health Risk Manag 10:641–647

    Article  PubMed  PubMed Central  Google Scholar 

  2. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  Google Scholar 

  3. Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R, Que I, Lowik C, Timpl R, Olsen BR (1999) Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 18(16):4414–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho H, Kim WJ, Lee YM, Kim YM, Kwon YG, Park YS, Choi EY, Kim KW (2004) N-/C-terminal deleted mutant of human endostatin efficiently acts as an anti-angiogenic and anti-tumorigenic agent. Oncol Rep 11(1):191–195

    CAS  PubMed  Google Scholar 

  5. Mitsuma W, Kodama M, Hanawa H, Ito M, Ramadan MM, Hirono S, Obata H, Okada S, Sanada F, Yanagawa T, Kashimura T, Fuse K, Tanabe N, Aizawa Y (2007) Serum endostatin in the coronary circulation of patients with coronary heart disease and its relation to coronary collateral formation. Am J Cardiol 99(4):494–498

    Article  CAS  PubMed  Google Scholar 

  6. Sponder M, Fritzer-Szekeres M, Litschauer B, Binder T, Strametz-Juranek J (2015) Endostatin and osteopontin are elevated in patients with both coronary artery disease and aortic valve calcification. IJC Metab Endocr 9:5–9

    Article  Google Scholar 

  7. Sodha NR, Clements RT, Boodhwani M, Xu SH, Laham RJ, Bianchi C, Sellke FW (2009) Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am J Physiol Heart Circ Physiol 296(2):H428–H434

    Article  CAS  PubMed  Google Scholar 

  8. Sponder M, Dangl D, Kampf S, Fritzer-Szekeres M, Strametz-Juranek J (2014) Exercise increases serum endostatin levels in female and male patients with diabetes and controls. Cardiovasc Diabetol 13(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sponder M, Sepiol K, Lankisch S, Priglinger M, Kampf S, Litschauer B, Fritzer-Szekeres M, Strametz-Juranek J (2014) Endostatin and physical exercise in young female and male athletes and controls. Int J Sports Med 35(13):1138–1142

    Article  CAS  PubMed  Google Scholar 

  10. Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, Cai J, Lu B, Li B, Zhang D, Kang Y, Tan M, Qian W, Guo Y (2009) Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28(38):3412–3422

    Article  CAS  PubMed  Google Scholar 

  11. Zhao X, Johnson JN, Singh K, Singh M (2007) Impairment of myocardial angiogenic response in the absence of osteopontin. Microcirculation 14(3):233–240

    Article  CAS  PubMed  Google Scholar 

  12. Zhang YL, Zhou SX, Lei J, Yuan GY, Wang JF (2008) Blockades of angiotensin and aldosterone reduce osteopontin expression and interstitial fibrosis infiltration in rats with myocardial infarction. Chin Med J (Engl) 121(21):2192–2196

    CAS  Google Scholar 

  13. Kahles F, Findeisen HM, Bruemmer D (2014) Osteopontin: a novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab 3(4):384–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okyay K, Tavil Y, Sahinarslan A, Tacoy G, Turfan M, Sen N, Gurbahar O, Boyaci B, Yalcin R, Demirkan D, Cengel A (2014) Plasma osteopontin levels in prediction of prognosis in acute myocardial infarction. Acta Cardiol 66(2):197–202

    Google Scholar 

  15. Abdel-Azeez HA, Al-Zaky M (2010) Plasma osteopontin as a predictor of coronary artery disease: association with echocardiographic characteristics of atherosclerosis. J Clin Lab Anal 24(3):201–206

    Article  CAS  PubMed  Google Scholar 

  16. Ohmori R, Momiyama Y, Taniguchi H, Takahashi R, Kusuhara M, Nakamura H, Ohsuzu F (2003) Plasma osteopontin levels are associated with the presence and extent of coronary artery disease. Atherosclerosis 170(2):333–337

    Article  CAS  PubMed  Google Scholar 

  17. Mazzone A, Parri MS, Giannessi D, Ravani M, Vaghetti M, Altieri P, Casalino L, Maltinti M, Balbi M, Barsotti A, Berti S (2011) Osteopontin plasma levels and accelerated atherosclerosis in patients with CAD undergoing PCI: a prospective clinical study. Coron Artery Dis 22(3):179–187

    Article  PubMed  Google Scholar 

  18. Cho HJ, Kim HS (2009) Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 11(3):206–213

    Article  CAS  PubMed  Google Scholar 

  19. Kurose S, Iwasaka J, Tsutsumi H, Yamanaka Y, Shinno H, Fukushima Y, Higurashi K, Imai M, Masuda I, Takeda S, Kawai C, Kimura Y (2015) Effect of exercise-based cardiac rehabilitation on non-culprit mild coronary plaques in the culprit coronary artery of patients with acute coronary syndrome. Heart Vessels. doi:10.1007/s00380-015-0681-1

    PubMed  Google Scholar 

  20. Talbot LA, Morrell CH, Fleg JL, Metter EJ (2007) Changes in leisure time physical activity and risk of all-cause mortality in men and women: the Baltimore longitudinal study of aging. Prev Med 45(2–3):169–176

    Article  PubMed  Google Scholar 

  21. Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN (2008) Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil 15(3):239–246

    Article  PubMed  Google Scholar 

  22. Lollgen H, Bockenhoff A, Knapp G (2009) Physical activity and all-cause mortality: an updated meta-analysis with different intensity categories. Int J Sports Med 30(3):213–224

    Article  CAS  PubMed  Google Scholar 

  23. Mora S, Cook N, Buring JE, Ridker PM, Lee IM (2007) Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 116(19):2110–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith TC, Wingard DL, Smith B, Kritz-Silverstein D, Barrett-Connor E (2007) Walking decreased risk of cardiovascular disease mortality in older adults with diabetes. J Clin Epidemiol 60(3):309–317

    Article  PubMed  Google Scholar 

  25. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 342(7):454–460

    Article  CAS  PubMed  Google Scholar 

  26. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109(2):220–226

    Article  CAS  PubMed  Google Scholar 

  27. Schuch G, Heymach JV, Nomi M, Machluf M, Force J, Atala A, Eder JP Jr, Folkman J, Soker S (2003) Endostatin inhibits the vascular endothelial growth factor-induced mobilization of endothelial progenitor cells. Cancer Res 63(23):8345–8350

    CAS  PubMed  Google Scholar 

  28. Jin X, Fu GX, Li XD, Zhu DL, Gao PJ (2011) Expression and function of osteopontin in vascular adventitial fibroblasts and pathological vascular remodeling. PLoS One 6(9):e23558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shiroma EJ, Lee IM (2010) Physical activity and cardiovascular health: lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation 122(7):743–752

    Article  PubMed  Google Scholar 

  30. Brixius K, Schoenberger S, Ladage D, Knigge H, Falkowski G, Hellmich M, Graf C, Latsch J, Montie GL, Prede GL, Bloch W (2008) Long-term endurance exercise decreases antiangiogenic endostatin signalling in overweight men aged 50–60 years. Br J Sports Med 42(2):126–129 (discussion 129)

  31. You JS, Ji HI, Chang KJ, Yoo MC, Yang HI, Jeong IK, Kim KS (2013) Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans. Mol Med Rep 8(2):579–584

    PubMed  Google Scholar 

  32. Zhu H, Jiang X, Li X, Hu M, Wan W, Wen Y, He Y, Zheng X (2015) Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction. Heart Vessels. doi:10.1007/s00380-015-0710-0

    Google Scholar 

  33. Panchal VR, Rehman J, Nguyen AT, Brown JW, Turrentine MW, Mahomed Y, March KL (2004) Reduced pericardial levels of endostatin correlate with collateral development in patients with ischemic heart disease. J Am Coll Cardiol 43(8):1383–1387

    Article  CAS  PubMed  Google Scholar 

  34. Giachelli CM, Speer MY, Li X, Rajachar RM, Yang H (2005) Regulation of vascular calcification: roles of phosphate and osteopontin. Circ Res 96(7):717–722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors give special thanks to Mira Brekalo and Heidi Kieweg for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sponder.

Ethics declarations

Funding sources

This study was funded by means of the Medical University of Vienna.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sponder, M., Fritzer-Szekeres, M., Marculescu, R. et al. Physical inactivity increases endostatin and osteopontin in patients with coronary artery disease. Heart Vessels 31, 1603–1608 (2016). https://doi.org/10.1007/s00380-015-0778-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-015-0778-6

Keywords

Navigation