Advertisement

Heart and Vessels

, Volume 30, Issue 2, pp 241–248 | Cite as

Cell adhesion molecules and eNOS expression in aorta of normocholesterolemic mice with different predispositions to atherosclerosis

  • Jana Rathouska
  • Ivana Nemeckova
  • Lenka Zemankova
  • Zbynek Strasky
  • Katerina Jezkova
  • Michala Varejckova
  • Petr NachtigalEmail author
Original Article

Abstract

C57BL/6J (B6) mice were demonstrated to be the most susceptible and C3H/HeJ (C3H) mice the most resistant to development of atherosclerosis. We hypothesized, whether pro-atherogenic (P-selectin, VCAM-1, and ICAM-1) and anti-atherogenic (endoglin and eNOS) proteins are expressed differently in aorta before the onset of atherosclerosis in these two mouse strains. B6 mice (n = 16) and C3H mice (n = 16) sustained on either chow or cholesterol (1 %) diet for 8 weeks. Biochemical analysis of lipoprotein profile and Western blot analysis of P-selectin, VCAM-1, ICAM-1, eNOS, endoglin, peNOS and TGF-βRII in aorta were performed. Western blot analysis revealed a lower expression of P-selectin by 7 %, VCAM-1 by 51 %, ICAM-1 by 6 %, and a higher expression of eNOS (by 18 %) in C3H mice in comparison with B6 mice after cholesterol diet. Further analysis revealed that cholesterol diet significantly increased the expression of endoglin (by 97 %), TGF-βRII (by 50 %), eNOS (by 21 %) and peNOS (by 122 %) in C3H mice, but not in B6 mice. We propose that lower expression of P-selectin, VCAM-1 and ICAM-1 and higher expression of eNOS in vivo in aorta of C3H mice might represent another potential mechanism for C3H mice being less susceptible to atherosclerosis when compared to B6 mice. In addition, endoglin seems to be involved in an upregulation of eNOS only in C3H mice. Thus, we propose that aorta of C3H mice is less prone to the expression of pro-inflammatory and endothelial dysfunction markers when compared to B6 mice, regardless of lipoprotein profile and before any signs of atherosclerotic process.

Keywords

Cell adhesion molecules eNOS Endoglin C57BL/6J mice C3H/HeJ mice 

Notes

Acknowledgments

This work was supported by grant from the Grant Agency of Charles University in Prague number 300911/C, Charles University in Prague project SVV/2014/260064. The publication is co-financed by the European Social Fund and the state budget of the Czech Republic, Project No. CZ.1.07/2.3.00/30.0061.

References

  1. 1.
    Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D (1990) Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis 10:316–323CrossRefPubMedGoogle Scholar
  2. 2.
    Paigen B, Mitchell D, Reue K, Morrow A, Lusis AJ, LeBoeuf RC (1987) Ath-1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice. Proc Natl Acad Sci USA 84:3763–3767CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Paigen B, Albee D, Holmes PA, Mitchell D (1987) Genetic analysis of murine strains C57BL/6J and C3H/HeJ to confirm the map position of Ath-1, a gene determining atherosclerosis susceptibility. Biochem Genet 25:501–511CrossRefPubMedGoogle Scholar
  4. 4.
    Ishida BY, Blanche PJ, Nichols AV, Yashar M, Paigen B (1991) Effects of atherogenic diet consumption on lipoproteins in mouse strains C57BL/6 and C3H. J Lipid Res 32:559–568PubMedGoogle Scholar
  5. 5.
    Miyoshi T, Tian J, Matsumoto AH, Shi W (2006) Differential response of vascular smooth muscle cells to oxidized LDL in mouse strains with different atherosclerosis susceptibility. Atherosclerosis 189:99–105CrossRefPubMedGoogle Scholar
  6. 6.
    Shi W, Pei H, Fischer JJ, James JC, Angle JF, Matsumoto AH, Helm GA, Sarembock IJ (2004) Neointimal formation in two apolipoprotein E-deficient mouse strains with different atherosclerosis susceptibility. J Lipid Res 45:2008–2014CrossRefPubMedGoogle Scholar
  7. 7.
    Shi W, Wang NJ, Shih DM, Sun VZ, Wang X, Lusis AJ (2000) Determinants of atherosclerosis susceptibility in the C3H and C57BL/6 mouse model: evidence for involvement of endothelial cells but not blood cells or cholesterol metabolism. Circ Res 86:1078–1084CrossRefPubMedGoogle Scholar
  8. 8.
    Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27:2292–2301CrossRefPubMedGoogle Scholar
  9. 9.
    Ley K, Huo Y (2001) VCAM-1 is critical in atherosclerosis. J Clin Invest 107:1209–1210CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Ramos CL, Huo Y, Jung U, Ghosh S, Manka DR, Sarembock IJ, Ley K (1999) Direct demonstration of P-selectin- and VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice. Circ Res 84:1237–1244CrossRefPubMedGoogle Scholar
  11. 11.
    Walpola PL, Gotlieb AI, Cybulsky MI, Langille BL (1995) Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler Thromb Vasc Biol 15:2–10CrossRefPubMedGoogle Scholar
  12. 12.
    Ma X, Labinaz M, Goldstein J, Miller H, Keon WJ, Letarte M, O’Brien E (2000) Endoglin is overexpressed after arterial injury and is required for transforming growth factor-beta-induced inhibition of smooth muscle cell migration. Arterioscler Thromb Vasc Biol 20:2546–2552CrossRefPubMedGoogle Scholar
  13. 13.
    Lopez-Novoa JM, Bernabeu C (2010) The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 299:H959–H974CrossRefPubMedGoogle Scholar
  14. 14.
    Ikemoto T, Hojo Y, Kondo H, Takahashi N, Hirose M, Nishimura Y, Katsuki T, Shimada K, Kario K (2011) Plasma endoglin as a marker to predict cardiovascular events in patients with chronic coronary artery diseases. Heart Vessels 27:344–351CrossRefPubMedGoogle Scholar
  15. 15.
    Nachtigal P, Zemankova Vecerova L, Rathouska J, Strasky Z (2012) The role of endoglin in atherosclerosis. Atherosclerosis 224:4–11CrossRefPubMedGoogle Scholar
  16. 16.
    Lastres P, Letamendia A, Zhang H, Rius C, Almendro N, Raab U, Lopez LA, Langa C, Fabra A, Letarte M, Bernabeu C (1996) Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol 133:1109–1121CrossRefPubMedGoogle Scholar
  17. 17.
    Toporsian M, Gros R, Kabir MG, Vera S, Govindaraju K, Eidelman DH, Husain M, Letarte M (2005) A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia. Circ Res 96:684–692CrossRefPubMedGoogle Scholar
  18. 18.
    Jerkic M, Rivas-Elena JV, Prieto M, Carron R, Sanz-Rodriguez F, Perez-Barriocanal F, Rodriguez-Barbero A, Bernabeu C, Lopez-Novoa JM (2004) Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J 18:609–611PubMedGoogle Scholar
  19. 19.
    Vasquez R, Farias M, Vega JL, Martin RS, Vecchiola A, Casanello P, Sobrevia L (2007) d-glucose stimulation of l-arginine transport and nitric oxide synthesis results from activation of mitogen-activated protein kinases p42/44 and Smad2 requiring functional type II TGF-beta receptors in human umbilical vein endothelium. J Cell Physiol 212:626–632CrossRefPubMedGoogle Scholar
  20. 20.
    Vecerova L, Strasky Z, Rathouska J, Slanarova M, Brcakova E, Micuda S, Nachtigal P (2012) Activation of TGF-beta receptors and Smad proteins by atorvastatin is related to reduced atherogenesis in ApoE/LDLR double knockout mice. J Atheroscler Thromb 19:115–126CrossRefPubMedGoogle Scholar
  21. 21.
    Rathouska J, Vecerova L, Strasky Z, Slanarova M, Brcakova E, Mullerova Z, Andrys C, Micuda S, Nachtigal P (2011) Endoglin as a possible marker of atorvastatin treatment benefit in atherosclerosis. Pharmacol Res 64:53–59CrossRefPubMedGoogle Scholar
  22. 22.
    Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951PubMedGoogle Scholar
  23. 23.
    Brcakova E, Fuksa L, Cermanova J, Kolouchova G, Hroch M, Hirsova P, Martinkova J, Staud F, Micuda S (2009) Alteration of methotrexate biliary and renal elimination during extrahepatic and intrahepatic cholestasis in rats. Biol Pharm Bull 32:1978–1985CrossRefPubMedGoogle Scholar
  24. 24.
    Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA (1987) Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68:231–240CrossRefPubMedGoogle Scholar
  25. 25.
    Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ (1993) Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest 91:2572–2579CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Shi W, Haberland ME, Jien ML, Shih DM, Lusis AJ (2000) Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 102:75–81CrossRefPubMedGoogle Scholar
  27. 27.
    Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107:1255–1262CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Yano H, Horinaka S, Yagi H, Ishimitsu T (2013) Comparison of inflammatory response after implantation of sirolimus- and paclitaxel-eluting stents in patients on hemodialysis. Heart Vessels 28:308–315CrossRefPubMedGoogle Scholar
  29. 29.
    Jerkic M, Rodriguez-Barbero A, Prieto M, Toporsian M, Pericacho M, Rivas-Elena JV, Obreo J, Wang A, Perez-Barriocanal F, Arevalo M, Bernabeu C, Letarte M, Lopez-Novoa JM (2006) Reduced angiogenic responses in adult Endoglin heterozygous mice. Cardiovasc Res 69:845–854CrossRefPubMedGoogle Scholar
  30. 30.
    Dansky HM, Charlton SA, Sikes JL, Heath SC, Simantov R, Levin LF, Shu P, Moore KJ, Breslow JL, Smith JD (1999) Genetic background determines the extent of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19:1960–1968CrossRefPubMedGoogle Scholar
  31. 31.
    Grimsditch DC, Penfold S, Latcham J, Vidgeon-Hart M, Groot PH, Benson GM (2000) C3H apoE(−/−) mice have less atherosclerosis than C57BL apoE(−/−) mice despite having a more atherogenic serum lipid profile. Atherosclerosis 151:389–397CrossRefPubMedGoogle Scholar
  32. 32.
    Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837 (pp 837a–837d)CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Jana Rathouska
    • 1
  • Ivana Nemeckova
    • 1
  • Lenka Zemankova
    • 1
  • Zbynek Strasky
    • 1
  • Katerina Jezkova
    • 1
  • Michala Varejckova
    • 1
  • Petr Nachtigal
    • 1
    Email author
  1. 1.Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec KraloveCharles University in PragueHradec KraloveCzech Republic

Personalised recommendations