Advertisement

Heart and Vessels

, Volume 29, Issue 3, pp 313–319 | Cite as

Extended-release niacin/laropiprant improves endothelial function in patients after myocardial infarction

  • Urska Bregar
  • Borut Jug
  • Irena Keber
  • Matija Cevc
  • Miran Sebestjen
Original Article

Abstract

Raising high-density lipoprotein cholesterol (HDL-C) is an important strategy for reducing residual cardiovascular risk. In the present study, we sought to assess the effect of extended-release niacin/laropiprant on endothelial function in patients after a myocardial infarction with target low-density lipoprotein cholesterol (LDL-C). In this double-blind, placebo-controlled trial, 63 men (35–60 years of age) after a myocardial infarction were randomized to either niacin/laropiprant (1000/20 mg daily for 4 weeks and 2000/40 mg daily thereafter) or placebo. Flow-mediated dilation (FMD) and nitroglycerin-induced (GTN) dilation of the brachial artery, total cholesterol (TC), LDL-C, HDL-C, triglycerides (TG), lipoprotein(a) [Lp(a)], and apolipoprotein (Apo) A1/B were measured at baseline and after 12 weeks of intervention. FMD significantly increased (from 3.9 ± 5.1 to 9.8 ± 4.4 %, p < 0.001) in the niacin/laropiprant group, but not in the placebo group (4.6 ± 4.4 to 6.1 ± 4.4 %, p = 0.16) (p = 0.02 for comparison of interventions). GTN dilation also increased in the niacin/laropiprant group (from 12.5 ± 6.1 to 16.7 ± 4.8 %, p = 0.02), but not in the placebo group (13.4 ± 5.0 to 15.1 ± 5.2 %, p = 0.18), (p = 0.60 for comparison of interventions). Niacin/laropiprant reduced TC and LDL-C (p = 0.05 for both) and increased HDL-C (p < 0.001) without influencing TG, with no changes in the placebo group. Lp(a) (p = 0.026) and ApoB (p = 0.014) were significantly lower in the niacin/laropiprant group, with no difference in the placebo group. ApoA1 did not change in either of the groups (p = 0.13; p = 0.26). FMD and GTN dilation improvements did not correlate with changes in the lipid profile. Niacin/laropiprant improves endothelium-dependent and endothelium-independent dilation of the brachial artery. This improvement does not correlate with changes in lipid parameters.

Keywords

Extended-release niacin/laropiprant Endothelial function High-density lipoprotein cholesterol Coronary artery disease 

References

  1. 1.
    Cholesterol Treatment Trialists’ (CTT) Collaboration (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomized trials. Lancet 376:1670–1681CrossRefGoogle Scholar
  2. 2.
    Tobaru T, Seki A, Asano R, Sumiyoshi T, Hagiwara N (2012) Lipid-lowering and anti-inflammatory effect of ezetimibe in hyperlipidemic patients with coronary artery disease. Heart Vessels. doi: 10.1007/s00380-012-0243-8 PubMedGoogle Scholar
  3. 3.
    Castelli WP (1988) Cholesterol and lipids in the risk of coronary artery disease—the Framingham Heart Study. Can J Cardiol 4(Suppl):5A–10APubMedGoogle Scholar
  4. 4.
    Assmann G, Schulte H, von Eckardstein A, Huang Y (1996) High-density lipoprotein cholesterol as a predictor of coronary heart disease risk: the PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 124(Suppl):S11–S20PubMedCrossRefGoogle Scholar
  5. 5.
    Warnholtz A, Wild P, Ostad MA, Elsner V, Stieber F, Schinzel R, Walter U, Peetz D, Lackner K, Blankenberg S, Munzel T (2009) Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: results of the randomized, double-blind, placebo-controlled INEF study. Atherosclerosis 204(1):216–221PubMedCrossRefGoogle Scholar
  6. 6.
    Hamilton SJ, Chew GT, Davis TM, Watts GF (2010) Niacin improves small artery vasodilatory function and compliance in statin-treated type 2 diabetic patients. Diab Vasc Dis Res 7(4):296–299PubMedCrossRefGoogle Scholar
  7. 7.
    Vaccari CS, Nagamia S, Thoenes M, Oguchi A, Hammoud R, Khan BV (2007) Efficacy of controlled-release niacin in treatment of metabolic syndrome: correlation to surrogate markers of atherosclerosis, vascular reactivity, and inflammation. J Clin Lipidol 1(6):605–613PubMedCrossRefGoogle Scholar
  8. 8.
    McCormack PL, Keating GM (2005) Prolonged-release nicotinic acid: a review of its use in the treatment of dyslipidemia. Drugs 65:2719–2740PubMedCrossRefGoogle Scholar
  9. 9.
    Canner PL, Berge KG, Wenger NK, Stammler J, Friedman L, Prineas RJ, Friedewald W (1986) Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J Am Coll Cardio 8:1245–1255CrossRefGoogle Scholar
  10. 10.
    Chapman MJ, Redfern JS, McGovern ME, Giral P (2010) Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol Ther 126(3):314–345PubMedCrossRefGoogle Scholar
  11. 11.
    Kuvin JT, Ramet ME, Patel AR, Pandian NG, Mendelsohn ME, Karas RH (2002) A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am Heart J 144:165–172PubMedCrossRefGoogle Scholar
  12. 12.
    Benjo AM, Maranhao RC, Coimbra SR, Andrade AC, Favarato D, Molina MS, Brandizzi LI, da Luz PL (2006) Accumulation of chylomicron remnants and impaired vascular reactivity occur in subjects with isolated low HDL cholesterol: effects of niacin treatment. Atherosclerosis 187:116–122PubMedCrossRefGoogle Scholar
  13. 13.
    Chapman MJ, Redfern JS, McGovern ME, Giral P (2010) Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol Ther 126:314–345PubMedCrossRefGoogle Scholar
  14. 14.
    Bruckert E, Labeuche J, Amarenco P (2010) Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis 210:353–361PubMedCrossRefGoogle Scholar
  15. 15.
    Nordestgaard BG, Chapman MJ, Kausik R, Boren J, Andreotti F, Watts GF, Ginsberg H, Amarenco P, Catapano A, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Reiner Z, Taskinen, Tokgözoglu L, Tybjærg-Hansen A, European Atherosclerosis Society Consensus Panel (2010) Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 31:2844–2853PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Friedwald WT, Levy RI, Frederickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of preparative ultracentrifuge. Clin Chem 18:499–502Google Scholar
  17. 17.
    Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, Lloyd JK, Deanfield JE (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111–1115PubMedCrossRefGoogle Scholar
  18. 18.
    Taylor AJ, Sullenberger LE, Lee HJ, Lee JK, Grace AK (2004) Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 110:3512–3517PubMedCrossRefGoogle Scholar
  19. 19.
    Villines TC, Stanek EJ, Devine PJ, Turco M, Miller M, Weissman NJ, Griffen L, Taylor AJ (2010) The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis): final results and the impact of medication adherence, dose, and treatment duration. J Am Coll Cardiol 55:2721–2726PubMedCrossRefGoogle Scholar
  20. 20.
    Morgan JM, Carey CM, Lincoff A, Capizzi DM (2004) The effects of niacin on lipoprotein subclass distribution. Prev Cardiol 7(4):182–187PubMedCrossRefGoogle Scholar
  21. 21.
    Sorrentino SA, Besler C, Rohrer L, Meyer M, Heinrich K, Bahlmann FH, Mueller M, Horváth T, Doerries C, Heinemann M, Flemmer S, Markowski A, Manes C, Bahr MJ, Haller H, von Eckardstein A, Drexler H, Landmesser U (2010) Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 121:110–122PubMedCrossRefGoogle Scholar
  22. 22.
    Creager MA, Cooke JP, Mendelsohn ME, Gallagher SJ, Coleman SM, Loscalzo J, Dzau VJ (1990) Impaired vasodilatation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest 86:228–234PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Bays HE, Shah A, Dong Q, McCrary Sisk C, Maccubbin D (2011) Extended-release niacin/laropiprant lipid-altering consistency across patients subgroups. Int J Clin Pract 65:436–445PubMedCrossRefGoogle Scholar
  24. 24.
    Maccubbin D, Bays HE, Olsson AG, Elinott V, Elis A, Mitcel Y, Sirah W, Betteridge A, Reyes R, Yu Q, Kuznetsova O, Sisk CM, Pasternak RC, Paolini JF (2008) Lipid-modifying efficacy and tolerability of extended-release niacin/laropiprant in patients with primary hypercholesterolemia or mixed dyslipidemia. Int J Clin Pract 62:1959–1970PubMedCrossRefGoogle Scholar
  25. 25.
    Bays HE, Shah A, Lin J, Sisk CM, Dong Q, Maccubbin D (2012) Consistency of extended-release niacin/laropiprant effects on Lp(a), non-HDL-C, Apo A1 and ApoB/ApoA1 ratio across patient subgroups. Am J Cardiovasc Drugs 12(3):197–206PubMedCrossRefGoogle Scholar
  26. 26.
    Lamon-Fava S, Diffenderfer MR, Barrett H, Buchsbaum A, Nyaku M, Horvath KV, Asztalos BF, Otokozawa S, Ai M, Matthan NR, Lichtenstein AH, Dolnikowski GG, Schafer E (2008) Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-1 and Apo-B-containing lipoproteins. Arterioscler Thromb Vasc Biol 28:1672–1678PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L (2004) Effects of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study). Lancet 364:937–952PubMedCrossRefGoogle Scholar
  28. 28.
    Walldius G, Junger I, Holme I, Aastveit AH, Kolar W, Steiner E (2001) High apolipoprotein B, low apolipoprotein a-1, and improvement in prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 358:2026–2033PubMedCrossRefGoogle Scholar
  29. 29.
    Van der Steeg WA, Boekhold S, Stein EA, El-Harchoui K, Stroes E, Sandhu MS, Wareham NJ, Jukema JW, Luben R, Zwinderman AH, Kastelein JJ, Khaw KT (2007) Role of the apolipoprotein B-apolipoprotein A-1 ratio in cardiovascular risk assessment: a case-control analysis in EPIC-Norfolk. Ann Intern Med 146:640–648PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Urska Bregar
    • 1
  • Borut Jug
    • 1
  • Irena Keber
    • 1
  • Matija Cevc
    • 1
  • Miran Sebestjen
    • 2
  1. 1.Department of AngiologyUniversity of Ljubljana Medical CentreLjubljanaSlovenia
  2. 2.Department of CardiologyUniversity of Ljubljana Medical CentreLjubljanaSlovenia

Personalised recommendations