Advertisement

Heart and Vessels

, Volume 28, Issue 4, pp 480–489 | Cite as

L/N-type calcium channel blocker cilnidipine reduces plasma aldosterone, albuminuria, and urinary liver-type fatty acid binding protein in patients with chronic kidney disease

  • Masanori AbeEmail author
  • Noriaki Maruyama
  • Hiroko Suzuki
  • Atsushi Inoshita
  • Yoshinori Yoshida
  • Kazuyoshi Okada
  • Masayoshi Soma
Original Article

Abstract

Cilnidipine inhibits both L- and N-type calcium channels and has been shown to dilate efferent arterioles as effectively as afferent arterioles. We conducted an open-label, randomized trial to compare the effects of cilnidipine against those of amlodipine on blood pressure (BP), albuminuria, and plasma aldosterone concentration in hypertensive patients with mild- to moderate-stage chronic kidney disease. Patients with BP ≥130/80 mmHg, an estimated glomerular filtration rate of 90–30 ml/min/1.73 m2, and albuminuria ≥30 mg/g, despite treatment with the maximum recommended dose of angiotensin II receptor blockers, were randomly assigned to two groups. Patients received either 10 mg/day cilnidipine (increased to 20 mg/day; n = 35) or 2.5 mg/day amlodipine (increased to 5 mg/day; n = 35). After 48 weeks of treatment, a significant and comparable reduction in systolic and diastolic BP was observed in both groups. The percent reduction in the urinary albumin to creatinine ratio and liver-type fatty acid binding protein (L-FABP) in the cilnidipine group was significantly greater than in the amlodipine group. Although plasma renin activity did not differ between the two groups, the plasma aldosterone level was significantly decreased in the cilnidipine group. Cilnidipine therefore appears to reduce albuminuria, urinary L-FABP, and plasma aldosterone levels more than amlodipine, and these effects are independent of BP reduction.

Keywords

Albuminuria Aldosterone Chronic kidney disease Cilnidipine Hypertension N-type calcium channel blocker 

Notes

Conflict of interest

The authors report no conflicts of interest.

References

  1. 1.
    Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, The Chronic Kidney Disease Prognosis Consortium (2011) Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 80:93–104PubMedCrossRefGoogle Scholar
  2. 2.
    van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey AS, de Jong PE, Gansevoort RT, The Chronic Kidney Disease Prognosis Consortium (2011) Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 79:1341–1352PubMedCrossRefGoogle Scholar
  3. 3.
    Hemmelgarn BR, Manns BJ, Lloyd A, James MT, Klarenbach S, Quinn RR, Wiebe N, Tonelli M, for the Alberta Kidney Disease Network (2010) Relation between kidney function, proteinuria, and adverse outcomes. JAMA 303:423–429PubMedCrossRefGoogle Scholar
  4. 4.
    Ruggenenti P, Perna A, Remuzzi G (2003) Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int 63:2254–2261PubMedCrossRefGoogle Scholar
  5. 5.
    de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snapinn S, Cooper ME, Mitch WE, Brenner BM (2004) Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation 110:921–927PubMedCrossRefGoogle Scholar
  6. 6.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329:1456–1462PubMedCrossRefGoogle Scholar
  7. 7.
    Brenner BM, Cooper MD, De Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869PubMedCrossRefGoogle Scholar
  8. 8.
    Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555PubMedCrossRefGoogle Scholar
  9. 9.
    Hayashi K, Wakino S, Sugano N, Ozawa Y, Saruta T, Homma K (2007) Ca2+ channel subtypes and pharmacology in the kidney. Circ Res 100:342–353PubMedCrossRefGoogle Scholar
  10. 10.
    Konda T, Enomoto A, Matsushita J, Takahara A, Moriyama T (2005) The N- and L-type calcium channel blocker cilnidipine suppresses renal injury in Dahl rats fed a high sucrose diet, an experimental model of metabolic syndrome. Nephron Physiol 101:1–13CrossRefGoogle Scholar
  11. 11.
    Zhou X, Ono H, Ono Y, Frohlich ED (2002) N- and L-type calcium channel antagonist improves glomerular dynamics, reverses severe nephrosclerosis, and inhibits apoptosis and proliferation in an l-NAME/SHR model. J Hypertens 20:993–1000PubMedCrossRefGoogle Scholar
  12. 12.
    Konno Y, Kimura K (2008) Vasodilatory effect of cilnidipine, an L-type and N-type calcium channel blocker, on rat kidney glomerular arteries. Int Heart J 49:723–732PubMedCrossRefGoogle Scholar
  13. 13.
    Rossier MF, Burnay MM, Vallotton MB, Capponi AM (1996) Distinct functions of T- and L-type calcium channels during activation of bovine adrenal glomerulosa cells. Endocrinology 137:4817–4826PubMedCrossRefGoogle Scholar
  14. 14.
    Brown NJ (2005) Aldosterone and end-organ damage. Curr Opin Nephrol Hypertens 14:235–241PubMedCrossRefGoogle Scholar
  15. 15.
    Bianchi S, Bigazzi R, Campese M (2006) Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int 70:2116–2123PubMedGoogle Scholar
  16. 16.
    Aritomi S, Wagatsuma H, Numata T, Uriu Y, Nogi Y, Mitsui A, Konda T, Mori Y, Yoshimura M (2011) Expression of N-type calcium channels in human adrenocortical cells and their contribution to corticosteroid synthesis. Hypertens Res 34:193–201PubMedCrossRefGoogle Scholar
  17. 17.
    Shiffrin EL (2006) Effects of aldosterone on the vasculature. Hypertension 47:312–318CrossRefGoogle Scholar
  18. 18.
    Miyata K, Rahman M, Shokoji T, Nagai Y, Zhang GX, Sun GP, Kimura S, Yukimura T, Kiyomoto H, Kohno M, Abe Y, Nishiyama A (2005) Aldosterone stimulates reactive oxygen species production through activation of NADPH oxidase in rat mesangial cells. J Am Soc Nephrol 16:2906–2912PubMedCrossRefGoogle Scholar
  19. 19.
    Kamijo A, Kimura K, Sugaya T, Yamanouchi M, Hikawa A, Hirano N, Hirata Y, Goto A, Omata M (2004) Urinary fatty acid-binding protein as a new clinical marker of the progression of chronic renal disease. J Lab Clin Med 143:23–30PubMedCrossRefGoogle Scholar
  20. 20.
    Nakamura T, Sugaya T, Kawagoe Y, Ueda Y, Osada S, Koide H (2005) Effect of pitavastatin on urinary liver-type fatty acid-binding protein levels in patients with early diabetic nephropathy. Diabetes Care 28:2728–2732PubMedCrossRefGoogle Scholar
  21. 21.
    Abe M, Maruyama N, Okada K, Matsumoto S, Matsumoto K, Soma M (2011) Effects of lipid-lowering therapy with rosuvastatin on kidney function and oxidative stress in patients with diabetic nephropathy. J Atheroscler Thromb 18:1018–1028PubMedCrossRefGoogle Scholar
  22. 22.
    Kamijo A, Sugaya T, Hikawa A, Yamanouchi M, Hirata Y, Ishimitsu T, Numabe A, Takagi M, Hayakawa H, Tabei F, Sugimoto T, Mise N, Kimura K (2005) Clinical evaluation of urinary excretion of liver-type fatty acid-binding protein as a marker for monitoring of chronic kidney disease: a multicenter trial. J Lab Clin Med 145:125–133PubMedCrossRefGoogle Scholar
  23. 23.
    Konda T, Enomoto A, Aritomi S, Niinuma K, Koganei H, Ogawa T, Nitta K (2009) Different effects of L/N-type and L-type calcium channel blockers on the renin-angiotensin-aldosterone system in SHR/Izm. Am J Nephrol 30:155–161PubMedCrossRefGoogle Scholar
  24. 24.
    Aritomi S, Konda T, Yoshimura M (2011) L/N-type calcium channel blocker suppresses reflex aldosterone production induced by antihypertensive action. Heart Vessels. doi: 10.1007/s00380-011-0191-8 PubMedGoogle Scholar
  25. 25.
    Levey AS, de Jong PE, Coresh J, EI Nahas M, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int 80:17–28PubMedCrossRefGoogle Scholar
  26. 26.
    Japanese Society of Hypertension (2009) Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2009). Hypertension Res 32:4–107CrossRefGoogle Scholar
  27. 27.
    Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992PubMedCrossRefGoogle Scholar
  28. 28.
    Fujita T, Ando K, Nishimura H (2007) Antiproteinuric effect of the calcium channel blocker cilnidipine added to renin-angiotensin inhibition in hypertensive patients with chronic kidney disease. Kidney Int 72:1543–1549PubMedCrossRefGoogle Scholar
  29. 29.
    Abe M, Okada K, Maruyama N, Matsumoto S, Maruyama T, Fujita T, Matsumoto K, Soma M (2010) Comparison between the antiproteinuric effects of the calcium channel blockers benidipine and cilnidipine in combination with angiotensin receptor blockers in hypertensive patients with chronic kidney disease. Expert Opin Investig Drugs 19:1027–1037PubMedCrossRefGoogle Scholar
  30. 30.
    Nakamura T, Sato E, Fujiwara N, Kawagoe Y, Ueda Y, Sugaya T, Yamagishi S, Yamada S, Koide H (2010) Comparative effects of benidipine and amlodipine on proteinuria, urinary 8-OHdG, urinary L-FABP, and inflammatory and atherosclerosis markers in early-stage chronic kidney disease. Am J Med Sci 339:157–163PubMedCrossRefGoogle Scholar
  31. 31.
    Abe M, Okada K, Maruyama N, Matsumoto S, Maruyama T, Fujita T, Matsumoto K, Soma M (2011) Benidipine reduces albuminuria and plasma aldosterone in mild-to-moderate stage chronic kidney disease with albuminuria. Hypertes Res 34:268–273CrossRefGoogle Scholar
  32. 32.
    Ferreira JC, Bacurau AV, Evangelista FS, Coelho MA, Oliveira EM, Casarini DE, Krieger JE, Brum PC (2008) The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Am J Physiol Regul Integr Comp Physiol 294:R26–R32PubMedCrossRefGoogle Scholar
  33. 33.
    Zhao Q, Wu TG, Lin Y, Li B, Luo JY, Wang LX (2010) Low-dose nesiritide improves renal function in heart failure patients following acute myocardial infarction. Heart Vessels 25:97–103PubMedCrossRefGoogle Scholar
  34. 34.
    Takahara A, Nakamura Y, Wagatsuma H, Aritomi S, Nakayama A, Satoh Y, Akie Y, Sugiyama A (2009) Long-term blockade of L/N-type Ca(2+) channels by cilnidipine ameliorates repolarization abnormality of the canine hypertrophied heart. Br J Pharmacol 158:1366–1374PubMedCrossRefGoogle Scholar
  35. 35.
    Konda T, Takahara A, Maeda K, Dohmoto H, Yoshimoto R (2001) Effects of a dual L/N-type Ca2+ channel blocker cilnidipine on neutrally mediated chronotropic response in anesthetized dogs. Eur J Pharmacol 413:117–120PubMedCrossRefGoogle Scholar
  36. 36.
    Konoshita T, Makino Y, Kimura T, Fujii M, Wakahara S, Arakawa K, Inoki I, Nakamura H, Miyamori I, The Genomic Disease Outcome Consortium (G-DOC) Study Investigators (2010) A new-generation N/L-type calcium channel blocker leads to less activation of the renin-angiotensin system compared with conventional L type calcium channel blocker. J Hypertens 28:2156–2160PubMedCrossRefGoogle Scholar
  37. 37.
    Agarwal R, Andersen MJ (2006) Prognostic importance of clinic and home blood pressure recordings in patients with chronic kidney disease. Kidney Int 69:406–411PubMedCrossRefGoogle Scholar
  38. 38.
    Okada T, Nakao T, Matsumoto H, Nagaoka Y (2008) Value of morning home blood pressure as a predictor of decline in renal function patients with chronic kidney disease. Am J Nephrol 28:982–989PubMedCrossRefGoogle Scholar
  39. 39.
    Oliveras A, Armario P, Martell-Claros N, Ruilope LM, de la Sierra A (2011) Urinary albumin excretion is associated with nocturnal systolic blood pressure in resistant hypertensives. Hypertension 57:556–560PubMedCrossRefGoogle Scholar
  40. 40.
    Ritz E, Viberti GC, Ruilope LM, Rabelink AJ, Izzo JL Jr, Katayama S, Ito S, Mimran A, Menne J, Rump LC, Januszewicz A, Haller H (2010) Determinants of urinary albumin excretion within the normal range in patients with type 2 diabetes: the randomized olmesartan and diabetes microalbuminuria prevention (ROADMAP) study. Diabetologia 53:49–57PubMedCrossRefGoogle Scholar
  41. 41.
    Takahara A (2009) Cilnidipine: a new generation Ca2+ channel blocker with inhibitory action on sympathetic neurotransmitter release. Cardiovasc Ther 27:124–139PubMedCrossRefGoogle Scholar
  42. 42.
    Hoshide S, Kario K, Ishikawa J, Eguchi K, Shimada K (2005) Comparison of the effects of cilnidipine and amlodipine on ambulatory blood pressure. Hypertens Res 28:1003–1008PubMedCrossRefGoogle Scholar
  43. 43.
    Ashizawa N, Seto S, Shibata Y, Yano K (2007) Bedtime administration of cilnidipine controls morning hypertension. Int Heart J 48:597–603PubMedCrossRefGoogle Scholar
  44. 44.
    Yamagishi T (2006) Beneficial effect of cilnidipine on morning hypertension and white-coat effect in patients with essential hypertension. Hypertens Res 29:339–344PubMedCrossRefGoogle Scholar
  45. 45.
    Uneyama H, Takahara A, Dohmoto H, Yoshimoto R, Inoue K, Akaike N (1997) Blockade of N-type Ca2+ current by cilnidipine (frc-8653) in acutely dissociated rat sympathetic neurons. Br J Pharmacol 122:37–42PubMedCrossRefGoogle Scholar
  46. 46.
    Sakata K, Shirotani M, Yoshida H, Nawada R, Obayashi K, Togi K, Miho N (1999) Effects of amlodipine and cilnidipine on cardiac sympathetic nervous system and neurohormonal status in essential hypertension. Hypertension 33:1447–1452PubMedCrossRefGoogle Scholar
  47. 47.
    de Faria JBL, Silva KC, de Faria JML (2011) The contribution of hypertension to diabetic nephropathy and retinopathy: the role of inflammation and oxidative stress. Hypertens Res 34:413–422CrossRefGoogle Scholar
  48. 48.
    Toba H, Yoshida M, Tojo C, Nakano A, Oshima Y, Kojima Y, Noda K, Wang J, Kobara M, Nakata T (2011) L/N-type calcium channel blocker cilnidipine ameliorates proteinuria and inhibits the renal renin-angiotensin-aldosterone system in deoxycorticosterone acetate-salt hypertensive rats. Hypertens Res 34:521–529PubMedCrossRefGoogle Scholar
  49. 49.
    Agarwal R, Campbell RC, Warnock DG (2004) Oxidative stress in hypertension and chronic kidney disease: role of angiotensin II. Semin Nephrol 24:101–114PubMedCrossRefGoogle Scholar
  50. 50.
    Nistala R, Whaley-Connell A, Sowers JR (2008) Redox control of renal function and hypertension. Antioxid Redox Signal 10:2047–2089PubMedCrossRefGoogle Scholar
  51. 51.
    Kriz W, Gretz N, Lemley KV (1998) Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 54:687–697PubMedCrossRefGoogle Scholar
  52. 52.
    Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T (2007) Podocyte as the target for aldosterone: roles of oxidative stress and Sgk 1. Hypertension 49:355–364PubMedCrossRefGoogle Scholar
  53. 53.
    Nakamura T, Fujiwara N, Sato E, Ueda Y, Sugaya T, Koide H (2010) Renoprotective effects of various angiotensin II receptor blockers in patients with early-stage diabetic nephropathy. Kidney Blood Press Res 33:213–220PubMedCrossRefGoogle Scholar
  54. 54.
    Tanaka M (2010) The L/N-type calcium channel blocker, cilnidipine, reduces heart rate and albuminuria in patients with type 2 diabetes. J Int Med Res 38:602–610PubMedCrossRefGoogle Scholar
  55. 55.
    Miwa Y, Tsuchihashi T, Ohta Y, Tominaga M, Kawano Y, Sasaguri T, Ueno M, Matsuoka H (2010) Antiproteinuric effect of cilnidipine in hypertensive Japanese treated with renin-angiotensin-system inhibitors—a multicenter, open, randomized trial using 24-hour urine collection. Clin Exp Hypertens 32:400–405PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Masanori Abe
    • 1
    Email author
  • Noriaki Maruyama
    • 1
  • Hiroko Suzuki
    • 1
  • Atsushi Inoshita
    • 1
  • Yoshinori Yoshida
    • 1
  • Kazuyoshi Okada
    • 1
  • Masayoshi Soma
    • 1
    • 2
  1. 1.Division of Nephrology, Hypertension and Endocrinology, Department of Internal MedicineNihon University School of MedicineTokyoJapan
  2. 2.Division of General Medicine, Department of Internal MedicineNihon University School of MedicineTokyoJapan

Personalised recommendations