Advertisement

Heart and Vessels

, Volume 27, Issue 3, pp 250–257 | Cite as

Infarct tissue characteristics of patients with versus without early revascularization for acute myocardial infarction: a contrast-enhancement cardiovascular magnetic resonance imaging study

  • M. A. G. M. Olimulder
  • K. Kraaier
  • M. A. Galjee
  • M. F. Scholten
  • J. van Es
  • L. J. Wagenaar
  • J. van der Palen
  • C. von Birgelen
Original Article

Abstract

Histopathological studies have suggested that early revascularization for acute myocardial infarction (MI) limits the size, transmural extent, and homogeneity of myocardial necrosis. However, the long-term effect of early revascularization on infarct tissue characteristics is largely unknown. Cardiovascular magnetic resonance (CMR) imaging with contrast enhancement (CE) allows non-invasive examination of infarct tissue characteristics and left ventricular (LV) dimensions and function in one examination. A total of 69 patients, referred for cardiac evaluation for various clinical reasons, were examined with CE-CMR >1 month (median 6, range 1–213) post-acute MI. We compared patients with (n = 33) versus without (n = 36) successful early revascularization for acute MI. Cine-CMR measurements included the LV end-diastolic and end-systolic volumes (ESV), LV ejection fraction (LVEF, %), and wall motion score index (WMSI). CE images were analyzed for core, peri, and total infarct size (%), and for the number of transmural segments. In our population, patients with successful early revascularization had better LVEFs (46 ± 16 vs. 34 ± 14%; P < 0.01), superior WMSIs (0.53, range 0.00–2.29 vs. 1.42, range 0.00–2.59; P < 0.01), and smaller ESVs (121 ± 70 vs. 166 ± 82; P = 0.02). However, there was no difference in core (9 ± 6 vs. 11 ± 6%), peri (9 ± 4 vs. 10 ± 4%), and total infarct size (18 ± 9 vs. 21 ± 9%; P > 0.05 for all comparisons); only transmural extent (P = 0.07) and infarct age (P = 0.06) tended to be larger in patients without early revascularization. CMR wall motion abnormalities are significantly better after revascularization; these differences are particularly marked later after infarction. The difference in scar size is more subtle and does not reach significance in this study.

Keywords

Cardiovascular magnetic resonance imaging Contrast enhancement Myocardial infarction Early revascularization Infarct tissue characterization 

Abbreviations

MI

Myocardial infarction

PCI

Percutaneous coronary intervention

CMR

Cardiovascular magnetic resonance

CE

Contrast enhancement

ECG

Electrocardiogram

EDV

End-diastolic volume

ESV

End-systolic volume

LVEF

Left ventricular ejection fraction

EDWM

End diastolic wall mass

WMSI

Wall motion score index

FWHM

Full width at half maximum

LAD

Left anterior descending

RCA

Right coronary artery

LCX

Left circumflex

EDWT

End diastolic wall thickness

References

  1. 1.
    Francone M, Bucciarelli-Ducci C, Carbone I, Canali E, Scardala R, Calabrese FA, Sardella G, Mancone M, Catalano C, Fedele F, Passariello R, Bogaert J, Agati L (2009) Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction: insight from cardiovascular magnetic resonance. J Am Coll Cardiol 54(23):2145–2153PubMedCrossRefGoogle Scholar
  2. 2.
    Fibrinolytic Therapy Trialists’ (FTT) Collaborative Group (1994) Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Lancet 343(8893):311–322Google Scholar
  3. 3.
    Collaborative Group (1993) Randomised trial of late thrombolysis in patients with suspected acute myocardial infarction. EMERAS (Estudio Multicentrico Estreptoquinasa Republicas de America del Sur). Lancet 342(8874):767–772Google Scholar
  4. 4.
    Feng Y, Shen C, Ma G, Wang J, Chen Z, Dai Q, Zhi H, Yang C, Fu Q, Shang G, Guan Y (2010) Prolonged pain to hospital time is associated with increased plasma advanced oxidation protein products and poor prognosis in patients with percutaneous coronary intervention for ST-elevation myocardial infarction. Heart Vessels 25(5):374–378PubMedCrossRefGoogle Scholar
  5. 5.
    Matsuda M, Fujiwara H, Onodera T, Tanaka M, Wu DJ, Fujiwara T, Hamashima Y, Kawai C (1987) Quantitative analysis of infarct size, contraction band necrosis, and coagulation necrosis in human autopsied hearts with acute myocardial infarction after treatment with selective intracoronary thrombolysis. Circulation 76(5):981–989PubMedCrossRefGoogle Scholar
  6. 6.
    Eitel I, Desch S, Sareban M, Fuernau G, Gutberlet M, Schuler G, Thiele H (2009) Prognostic significance and magnetic resonance imaging findings in aborted myocardial infarction after primary angioplasty. Am Heart J 158(5):806–813PubMedCrossRefGoogle Scholar
  7. 7.
    Karagueuzian HS, Fenoglio JJ, Jr, Weiss MB, Wit AL (1979) Protracted ventricular tachycardia induced by premature stimulation of the canine heart after coronary artery occlusion and reperfusion. Circ Res 44(6):833–846PubMedCrossRefGoogle Scholar
  8. 8.
    Michelson EL, Spear JF, Moore EN (1980) Electrophysiologic and anatomic correlates of sustained ventricular tachyarrhythmias in a model of chronic myocardial infarction. Am J Cardiol 45(3):583–590PubMedCrossRefGoogle Scholar
  9. 9.
    O’Regan DP, Ahmed R, Neuwirth C, Tan Y, Durighel G, Hajnal JV, Nadra I, Corbett SJ, Cook SA (2009) Cardiac MRI of myocardial salvage at the peri-infarct border zones after primary coronary intervention. Am J Physiol Heart Circ Physiol 297(1):H340–H346PubMedCrossRefGoogle Scholar
  10. 10.
    Friedrich MG (2008) Tissue characterization of acute myocardial infarction and myocarditis by cardiac magnetic resonance. JACC Cardiovasc Imaging 1(5):652–662PubMedCrossRefGoogle Scholar
  11. 11.
    Thygesen K, Alpert JS, White HD (2007) Universal definition of myocardial infarction. Eur Heart J 28(20):2525–2538PubMedCrossRefGoogle Scholar
  12. 12.
    Van de WF, Bax J, Betriu A, Blomstrom-Lundqvist C, Crea F, Falk V, Filippatos G, Fox K, Huber K, Kastrati A, Rosengren A, Steg PG, Tubaro M, Verheugt F, Weidinger F, Weis M, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Aguirre FV, Al Attar N, Alegria E, Andereotti F, Benzer W, Breithardt O, Danchin N, Di Mario C, Dudek D, Gulba D, Halvorsen S, Kaufmann P, Kornowski R, Lip GY, Rutten F (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 29(23):2909–2945Google Scholar
  13. 13.
    Roes SD, Kelle S, Kaandorp TA, Kokocinski T, Poldermans D, Lamb HJ, Boersma E, van der Wall EE, Fleck E, de Roos A, Nagel E, Bax JJ (2007) Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. Am J Cardiol 100(6):930–936PubMedCrossRefGoogle Scholar
  14. 14.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542PubMedCrossRefGoogle Scholar
  15. 15.
    Amado LC, Gerber BL, Gupta SN, Rettmann DW, Szarf G, Schock R, Nasir K, Kraitchman DL, Lima JA (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44(12):2383–2389PubMedCrossRefGoogle Scholar
  16. 16.
    Bondarenko O, Beek AM, Hofman MB, Kuhl HP, Twisk JW, van Dockum WG, Visser CA, van Rossum AC (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 7(2):481–485PubMedCrossRefGoogle Scholar
  17. 17.
    Beek AM, Bondarenko O, Afsharzada F, van Rossum AC (2009) Quantification of late gadolinium enhanced CMR in viability assessment in chronic ischemic heart disease: a comparison to functional outcome. J Cardiovasc Magn Reson 11(1):6PubMedCrossRefGoogle Scholar
  18. 18.
    Roes SD, Borleffs C, van der Geest RJ, Westenberg JJM, Marsan NA, Kaandorp TAM, Reiber JHC, Zeppenfeld K, Lamb HJ, de Roos A (2009) Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging 2(3):183PubMedCrossRefGoogle Scholar
  19. 19.
    Kannel WB (1985) Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J 110(5):1100–1107PubMedCrossRefGoogle Scholar
  20. 20.
    Schomig A, Ndrepepa G, Mehilli J, Schwaiger M, Schuhlen H, Nekolla S, Pache J, Martinoff S, Bollwein H, Kastrati A (2003) Therapy-dependent influence of time-to-treatment interval on myocardial salvage in patients with acute myocardial infarction treated with coronary artery stenting or thrombolysis. Circulation 108(9):1084–1088PubMedCrossRefGoogle Scholar
  21. 21.
    Schomig A, Mehilli J, Antoniucci D, Ndrepepa G, Markwardt C, Di PF, Nekolla SG, Schlotterbeck K, Schuhlen H, Pache J, Seyfarth M, Martinoff S, Benzer W, Schmitt C, Dirschinger J, Schwaiger M, Kastrati A (2005) Mechanical reperfusion in patients with acute myocardial infarction presenting more than 12 hours from symptom onset: a randomized controlled trial. JAMA 293(23):2865–2872PubMedCrossRefGoogle Scholar
  22. 22.
    Heidary S, Patel H, Chung J, Yokota H, Gupta SN, Bennett MV, Katikireddy C, Nguyen P, Pauly JM, Terashima M, McConnell MV, Yang PC (2010) Quantitative tissue characterization of infarct core and border zone in patients with ischemic cardiomyopathy by magnetic resonance is associated with future cardiovascular events. J Am Coll Cardiol 55(24):2762–2768PubMedCrossRefGoogle Scholar
  23. 23.
    ACE Inhibitor Myocardial Infarction Collaborative Group (1998) Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation 97(22):2202–2212CrossRefGoogle Scholar
  24. 24.
    Wijnmaalen AP, Schalij MJ, von der Thusen JH, Klautz RJ, Zeppenfeld K (2010) Early reperfusion during acute myocardial infarction affects ventricular tachycardia characteristics and the chronic electroanatomic and histological substrate. Circulation 121(17):1881–1883CrossRefGoogle Scholar
  25. 25.
    Yokota T, Osanai T, Hanada K, Kushibiki M, Abe N, Oikawa K, Tomita H, Higuma T, Yokoyama J, Hanada H, Okumura K (2010) Effects of telmisartan on markers of ventricular remodeling in patients with acute myocardial infarction: comparison with enalapril. Heart Vessels 25(6):460–468PubMedCrossRefGoogle Scholar
  26. 26.
    Mollema SA, Liem SS, Suffoletto MS, Bleeker GB, van der Hoeven BL, van de Veire NR, Boersma E, Holman ER, van der Wall EE, Schalij MJ, Gorcsan J III, Bax JJ (2007) Left ventricular dyssynchrony acutely after myocardial infarction predicts left ventricular remodeling. J Am Coll Cardiol 50(16):1532–1540PubMedCrossRefGoogle Scholar
  27. 27.
    Chareonthaitawee P, Christian TF, Hirose K, Gibbons RJ, Rumberger JA (1995) Relation of initial infarct size to extent of left ventricular remodeling in the year after acute myocardial infarction. J Am Coll Cardiol 25(3):567–573PubMedCrossRefGoogle Scholar
  28. 28.
    Tarantini G, Razzolini R, Cacciavillani L, Bilato C, Sarais C, Marra MP, Napodano M, Ramondo A, Iliceto S (2006) Influence of transmurality, infarct size, and severe microvascular obstruction on left ventricular remodeling and function after primary coronary angioplasty. Am J Cardiol 98(8):1033–1040PubMedCrossRefGoogle Scholar
  29. 29.
    Hirayama A, Adachi T, Asada S, Mishima M, Nanto S, Kusuoka H, Yamamoto K, Matsumura Y, Hori M, Inoue M (1993) Late reperfusion for acute myocardial infarction limits the dilatation of left ventricle without the reduction of infarct size. Circulation 88(6):2565–2574PubMedCrossRefGoogle Scholar
  30. 30.
    Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81(4):1161–1172PubMedCrossRefGoogle Scholar
  31. 31.
    Ramos LW, Murad N, Goto E, Antonio EL, Silva JA, Jr, Tucci PF, Carvalho AC (2009) Ischemia/reperfusion is an independent trigger for increasing myocardial content of mRNA B-type natriuretic peptide. Heart Vessels 24(6):454–459PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • M. A. G. M. Olimulder
    • 1
  • K. Kraaier
    • 1
  • M. A. Galjee
    • 1
  • M. F. Scholten
    • 1
  • J. van Es
    • 1
  • L. J. Wagenaar
    • 1
  • J. van der Palen
    • 2
    • 3
  • C. von Birgelen
    • 1
    • 4
  1. 1.Department of Cardiology, Thoraxcentrum Twente, MSTUniversity of TwenteEnschedeThe Netherlands
  2. 2.Department of EpidemiologyUniversity of TwenteEnschedeThe Netherlands
  3. 3.Department of Research Methodology, Measurement and Data AnalysisUniversity of TwenteEnschedeThe Netherlands
  4. 4.MIRA, Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations