Heart and Vessels

, Volume 27, Issue 2, pp 208–215 | Cite as

Advanced glycation end products in myocardial reperfusion injury

  • Peter CelecEmail author
  • Július Hodosy
  • Peter Jáni
  • Pavol Janega
  • Matúš Kúdela
  • Marta Kalousová
  • Johana Holzerová
  • Vojtech Parrák
  • Lukáč Halčák
  • Tomáš Zima
  • Martin Braun
  • Ivan Pecháň
  • Ján Murín
  • Katarína Šebeková
Original Article


Advanced glycation end products (AGEs) are associated with cardiovascular diseases. Whether the AGE levels change during myocardial reperfusion injury is currently unknown. The aim of our study was to investigate the dynamics of AGEs in myocardial reperfusion injury and to discuss potential reasons for these changes. The dynamics of AGEs, pentosidine and neopterin in the plasma of patients with acute myocardial infarction (AMI) treated using thrombolysis (n = 40) were analyzed. In addition, AGEs were measured in patients with open heart surgery (n = 12) and rabbits with induced AMI (n = 9). In all three studies of myocardial reperfusion injury, a significant decrease of AGEs was observed (by 26 ± 19% in patients with AMI, by 23 ± 14% in patients with open heart surgery and by 39 ± 10% in rabbits with AMI within 1 day of reperfusion; p < 0.05 in all studies). In additional studies, an association between lower AGEs and an activated immune system (R 2 = 0.09; p < 0.01) and fasting (decrease by 38%; p < 0.01) was shown. AGEs decrease in reperfusion injury of the heart. Indices pointing towards the involvement of immune system activation and fasting are presented. Further studies focusing on the underlying mechanism and on the clinical value of the observed dynamics of AGEs are needed.


Carbonyl stress Pentosidine Acute myocardial infarction Neopterin 



The study was supported by research projects MSM 0021620807 and VMSP-II-0027-09.


  1. 1.
    Valencia JV, Weldon SC, Quinn D, Kiers GH, DeGroot J, TeKoppele JM, Hughes TE (2004) Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics. Anal Biochem 324:68–78PubMedCrossRefGoogle Scholar
  2. 2.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820PubMedCrossRefGoogle Scholar
  3. 3.
    Sebekova K, Kupcova V, Schinzel R, Heidland A (2002) Markedly elevated levels of plasma advanced glycation end products in patients with liver cirrhosis—amelioration by liver transplantation. J Hepatol 36:66–71PubMedCrossRefGoogle Scholar
  4. 4.
    Sebekova K, Heidland A, Waidheim A, Schinzel R (2000) Evidence for accumulation of advanced glycation end products in acute renal failure. Nephron 86:186–187PubMedCrossRefGoogle Scholar
  5. 5.
    Sasaki N, Fukatsu R, Tsuzuki K, Hayashi Y, Yoshida T, Fujii N, Koike T, Wakayama I, Yanagihara R, Garruto R, Amano N, Makita Z (1998) Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am J Pathol 153:1149–1155PubMedCrossRefGoogle Scholar
  6. 6.
    Frye EB, Degenhardt TP, Thorpe SR, Baynes JW (1998) Role of the Maillard reaction in aging of tissue proteins—advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem 273:18714–18719PubMedCrossRefGoogle Scholar
  7. 7.
    Kilhovd BK, Berg TJ, Birkeland KI, Thorsby P, Hanssen KF (1999) Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 22:1543–1548PubMedCrossRefGoogle Scholar
  8. 8.
    Berg TJ, Snorgaard O, Faber J, Torjesen PA, Hildebrandt P, Mehlsen J, Hanssen KF (1999) Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 22:1186–1190PubMedCrossRefGoogle Scholar
  9. 9.
    van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, Ijsselmuiden AJJ, Schalkwijk CG, Bronzwaer JGF, Diamant M, Borbely A, Van der Velden J, Stienen GJM, Laarman GJ, Niessen HWM, Paulus WJ (2008) Diastolic stiffness of the failing diabetic heart—importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117:43–51PubMedCrossRefGoogle Scholar
  10. 10.
    Ma H, Li SY, Xu PS, Babcock SA, Dolence EK, Brownlee M, Li J, Ren J (2009) Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 13:1751–1764PubMedCrossRefGoogle Scholar
  11. 11.
    Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawney A (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592PubMedCrossRefGoogle Scholar
  12. 12.
    Dolhoferbliesener R, Lechner B, Deppisch R, Ritz E, Gerbitz KD (1995) Immunological determination of advanced glycosylation end-products in human blood and urine. Nephrol Dial Transplant 10:657–664Google Scholar
  13. 13.
    Cho SJ, Roman G, Yeboah F, Konishi Y (2007) The road to advanced glycation end products: a mechanistic perspective. Curr Med Chem 14:1653–1671PubMedCrossRefGoogle Scholar
  14. 14.
    Boor P, Bozek P, Blazicek P, Syrova D, Schinzel R, Heidland A, Pecovova A, Sebekova K (2001) Increased levels of circulating advanced glycation end products in a model of acute renal insufficiency in rats. Cas Lek Cesk 140:375–380PubMedGoogle Scholar
  15. 15.
    Jones SP, Hoffmeyer MR, Sharp BR, Ho YS, Lefer DJ (2003) Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 284:H277–H282PubMedGoogle Scholar
  16. 16.
    Bagatini MD, Martins CC, Battisti V, Gasparetto D, da Rosa CS, Spanevello RM, Ahmed M, Schmatz R, Schetinger MR, Morsch VM (2011) Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessels 26:55–63PubMedCrossRefGoogle Scholar
  17. 17.
    Miyata T, Wada Y, Cai Z, Iida Y, Horie K, Yasuda Y, Maeda K, Kurokawa K, DeStrihou CV (1997) Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int 51:1170–1181PubMedCrossRefGoogle Scholar
  18. 18.
    Rojas A, Mercadal E, Figueroa H, Morales MA (2008) Advanced glycation and ROS: a link between diabetes and heart failure. Curr Vasc Pharmacol 6:44–51PubMedCrossRefGoogle Scholar
  19. 19.
    Hartog JWL, Voors AA, Bakker SJL, Smit AJ, van Veldhuisen DJ (2007) Advanced glycation end-products (AGES) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail 9:1146–1155PubMedCrossRefGoogle Scholar
  20. 20.
    Munch G, Keis R, Wessels A, Riederer P, Bahner U, Heidland A, Niwa T, Lemke HD, Schinzel R (1997) Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur J Clin Chem Clin Biochem 35:669–677PubMedGoogle Scholar
  21. 21.
    Spacek P, Adam M (2002) HPLC method for pentosidine determination in urine, serum, and tissues as a marker of glycation and oxidation loading of the organism. J Liq Chromatogr Relat Technol 25:1807–1820CrossRefGoogle Scholar
  22. 22.
    Brownlee M (2005) The pathobiology of diabetic complications—a unifying mechanism. Diabetes 54:1615–1625PubMedCrossRefGoogle Scholar
  23. 23.
    Kiuchi K, Nejima J, Takano T, Ohta M, Hashimoto H (2001) Increased serum concentrations of advanced glycation end products: a marker of coronary artery disease activity in type 2 diabetic patients. Heart 85:87–91PubMedCrossRefGoogle Scholar
  24. 24.
    Steine K, Larsen JR, Stugaard M, Berg TJ, Brekke M, Dahl-Jorgensen K (2007) LV systolic impairment in patients with asymptomatic coronary heart disease and type I diabetes is related to coronary atherosclerosis, glycaemic control and advanced glycation endproducts. Eur J Heart Fail 9:1044–1050PubMedCrossRefGoogle Scholar
  25. 25.
    Hartog JWL, Voors AA, Schalkwijk CG, Scheijen J, Smilde TDJ, Damman K, Bakker SJL, Smit AJ, van Veldhuisen DJ (2007) Clinical and prognostic value of advanced glycation end-products in chronic heart failure. Eur Heart J 28:2879–2885PubMedCrossRefGoogle Scholar
  26. 26.
    Koyama Y, Takeishi Y, Arimoto T, Niizeki T, Shishido T, Takahashi H, Nozaki N, Hirono O, Tsunoda Y, Nitobe J, Watanabe T, Kubota I (2007) High serum level of pentosidine, an advanced glycation end product (AGE), is a risk factor of patients with heart failure. J Card Fail 13:199–206PubMedCrossRefGoogle Scholar
  27. 27.
    Chrysohoou C, Pitsavos C, Aggelopoulos P, Skoumas J, Tsiamis E, Panagiotakos DB, Stefanadis C (2010) Serum glucose level at hospital admission correlates with left ventricular systolic dysfunction in nondiabetic, acute coronary patients: the Hellenic Heart Failure Study. Heart Vessels 25:209–216PubMedCrossRefGoogle Scholar
  28. 28.
    Heidland A, Sebekova K, Frangiosa A, De Santo LS, Cirillo M, Rossi F, Cotrufo M, Perna A, Klassen A, Schinzel R, De Santo NG (2004) Paradox of circulating advanced glycation end product concentrations in patients with congestive heart failure and after heart transplantation. Heart 90:1269–1274PubMedCrossRefGoogle Scholar
  29. 29.
    Yan SF, Ramasamy R, Schmidt AM (2008) Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Clin Pract Endocrinol Metab 4:285–293PubMedCrossRefGoogle Scholar
  30. 30.
    Westwood ME, Argirov OK, Abordo EA, Thornalley PJ (1997) Methylglyoxal-modified arginine residues—a signal for receptor-mediated endocytosis and degradation of proteins by monocytic THP-1 cells. Biochim Biophys Acta Mol Cell Res 1356:84–94CrossRefGoogle Scholar
  31. 31.
    Gugliucci A, Bendayan M (1996) Renal fate of circulating advanced glycated end products (AGE): evidence for reabsorption and catabolism of AGE-peptides by renal proximal tubular cells. Diabetologia 39:149–160PubMedCrossRefGoogle Scholar
  32. 32.
    Van Nguyen C (2006) Toxicity of the AGEs generated from the Maillard reaction: on the relationship of food-AGEs and biological-AGEs. Mol Nutr Food Res 50:1140–1149CrossRefGoogle Scholar
  33. 33.
    Yamagishi T, Bessho M, Yanagida S, Nishizawa K, Kusuhara M, Ohsuzu F, Tamai S (2010) Severe, short-term food restriction improves cardiac function following ischemia/reperfusion in perfused rat hearts. Heart Vessels 25:417–425PubMedCrossRefGoogle Scholar
  34. 34.
    Zimmerman GA, Meistrell M, Bloom O, Cockroft KM, Bianchi M, Risucci D, Broome J, Farmer P, Cerami A, Vlassara H, Tracey KJ (1995) Neurotoxicity of advanced glycation endproducts during focal stroke and neuroprotective effects of aminoguanidine. Proc Natl Acad Sci USA 92:3744–3748PubMedCrossRefGoogle Scholar
  35. 35.
    Hassid BG, Nair MN, Ducruet AF, Otten ML, Komotar RJ, Pinsky DJ, Schmidt AM, Yan SF, Connolly ES (2009) Neuronal RAGE expression modulates severity of injury following transient focal cerebral ischemia. J Clin Neurosci 16:302–306PubMedCrossRefGoogle Scholar
  36. 36.
    Kilhovd BK, Juutilainen A, Lehto S, Ronnemaa T, Torjesen PA, Birkeland KI, Berg TJ, Hanssen KF, Laakso M (2005) High serum levels of advanced glycation end products predict increased coronary heart disease mortality in nondiabetic women but not in nondiabetic men—a population-based 18-year follow-up study. Arterioscler Thromb Vasc Biol 25:815–820PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Peter Celec
    • 1
    • 2
    • 3
    Email author
  • Július Hodosy
    • 1
    • 4
    • 5
  • Peter Jáni
    • 6
  • Pavol Janega
    • 7
    • 8
  • Matúš Kúdela
    • 9
  • Marta Kalousová
    • 10
  • Johana Holzerová
    • 2
  • Vojtech Parrák
    • 5
  • Lukáč Halčák
    • 11
  • Tomáš Zima
    • 10
  • Martin Braun
    • 12
  • Ivan Pecháň
    • 13
  • Ján Murín
    • 5
  • Katarína Šebeková
    • 1
  1. 1.Institute of Molecular BiomedicineComenius UniversityBratislavaSlovakia
  2. 2.Institute of PathophysiologyComenius UniversityBratislavaSlovakia
  3. 3.Department of Molecular BiologyComenius UniversityBratislavaSlovakia
  4. 4.Institute of PhysiologyComenius UniversityBratislavaSlovakia
  5. 5.University HospitalComenius UniversityBratislavaSlovakia
  6. 6.Department of PathologyHospital KrnovKrnovCzech Republic
  7. 7.Institute of PathologyComenius UniversityBratislavaSlovakia
  8. 8.Institute of Normal and Pathological Physiology, Slovak Academy of SciencesBratislavaSlovakia
  9. 9.Department of ZoologyComenius UniversityBratislavaSlovakia
  10. 10.Institute of Clinical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine, Charles University in Prague and General University Hospital in PraguePragueCzech Republic
  11. 11.Institute of Chemistry, Biochemistry and Clinical BiochemistryComenius UniversityBratislavaSlovakia
  12. 12.Institute of RheumatologyPragueCzech Republic
  13. 13.National Institute of Cardiovascular DiseasesBratislavaSlovakia

Personalised recommendations