Advertisement

Heart and Vessels

, Volume 25, Issue 3, pp 229–236 | Cite as

Association of the CYBA, PPARGC1A, PPARG3, and PPARD gene variants with coronary artery disease and metabolic risk factors of coronary atherosclerosis in a Russian population

  • Alexey G. Nikitin
  • Dimitry A. Chistiakov
  • Larissa O. Minushkina
  • Dmitry A. Zateyshchikov
  • Valery V. Nosikov
Original Article

Abstract

Abnormalities in lipid metabolism and enhanced oxidative stress are considered as major risk factors for coronary atherosclerosis. Functional genetic variations in genes whose products are involved in lipid metabolism and antioxidant defense could therefore modulate risk of coronary artery disease (CAD). In this study, we evaluate whether the PPARGC1A Gly482Ser, PPARG3 (−681)C/G, PPARD +294T/C, and CYBA +242C/T gene variants confer the risk of CAD in a Russian population. A total of 313 CAD patients and 132 controls with no clinical sign of CAD were studied. The polymorphic markers were tested using a TaqMan assay. Allele and genotype frequencies in CAD patients and controls were compared using the Yates χ2 test. Association of the genetic markers with metabolic risk factors of arterial atherosclerosis was studied using the analysis of variance test and then adjusted for conventional risk factors in the multiple regression analysis. For CYBA +242C/T, both the allele T and genotype T/T showed significant association with higher risk of CAD (odds ratio =1.49 and 3.89, respectively). The allele C and genotype C/C of the +294T/C marker of PPARD were associated with increased risk of CAD providing an odds ratio of 2.12 and 2.78, respectively. The risk variants of CYBA +242C/T and PPARD +294T/C markers were associated with higher low-density lipoprotein cholesterol and increased total serum cholesterol, respectively. In conclusion, the CYBA +242C/T and PPARD +294T/C variants modulate risk of CAD through their associations with atherogenic serum lipid profiles.

Key words

Coronary artery disease Serum lipid profile Association CYBA PPARD Polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finck BN (2007) The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res 73:269–277CrossRefPubMedGoogle Scholar
  2. 2.
    Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435CrossRefPubMedGoogle Scholar
  3. 3.
    Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J (1997) The organization, promoter analysis, and expression of the human PPARγ gene. J Biol Chem 272:18779–18789CrossRefPubMedGoogle Scholar
  4. 4.
    Fajas L, Fruchart JC, Auwerx J (1998) PPARγ3 mRNA: a distinct PPARγ mRNA subtype transcribed from an independent promoter. FEBS Lett 438:55–6CrossRefPubMedGoogle Scholar
  5. 5.
    Meirhaeghe A, Fajas L, Gouilleux F, Cottel D, Helbecque N, Auwerx J, Amouyel P (2003) A functional polymorphism in a STAT5B site of the human PPARγ3 gene promoter affects height and lipid metabolism in a French population. Arterioscler Thromb Vasc Biol 23:289–294CrossRefPubMedGoogle Scholar
  6. 6.
    Cecil JE, Fischer B, Doney A, Hetherington M, Watt P, Wrieden W, Bolton-Smith C, Palmer CN (2005) The Pro12Ala and C-681G variants of the PPARG locus are associated with opposing growth phenotypes in children. Diabetologia 48:1496–1502CrossRefPubMedGoogle Scholar
  7. 7.
    Santos JL, Boutin P, Verdich C, Holst C, Larsen LH, Tourbo S, Dina C, Saris WH, Blaak EE, Hoffstedt J, Taylor MA, Polak J, Clement K, Langin D, Astrup A, Froguel P, Pedersen O, Sorensen TI, Martinez JA (2006) Genotype-by-nutrient interactions assessed in European obese women. A case-only study. Eur J Nutr 45: 454–462CrossRefPubMedGoogle Scholar
  8. 8.
    Gilde AJ, van der Lee KA, Willemsen PH, Chinetti G, van der Leij FR, van der Vusse GJ, Staels B, van Bilsen M (2003) Peroxisome proliferator-activated receptor (PPAR)α and PPARβ/δ, but not PPARγ, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 92:518–524CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng L, Ding G, Qin Q, Huang Y, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YE, Yang Q (2004) Cardiomyocyterestricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250CrossRefPubMedGoogle Scholar
  10. 10.
    Skogsberg J, Kannisto K, Cassel TN, Harnsten A, Eriksson P, Ehrenborg E (2003) Evidence that peroxisome proliferatoractivated receptor delta influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol 23:637–643CrossRefPubMedGoogle Scholar
  11. 11.
    Chen S, Tsybouleva N, Ballantyne CM, Gotto AM, Marian AJ (2004) Effects of PPARα, γ and δ haplotypes on plasma levels of lipids and progression of coronary atherosclerosis and response to statin therapy in the lipoprotein coronary atherosclerosis study. Pharmacogenetics 14:61–71CrossRefPubMedGoogle Scholar
  12. 12.
    Aberle J, Hopfer I, Beil FU, Seedorf U (2006) Association of the T+294C polymorphism in PPAR delta with low HDL cholesterol and coronary heart disease risk in women. Int J Med Sci 3: 108–111PubMedGoogle Scholar
  13. 13.
    Knutti D, Kralli A (2001) PGC-1, a versatile coactivator. Trends Endocrinol Metab 12:360–365CrossRefPubMedGoogle Scholar
  14. 14.
    Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95:568–578CrossRefPubMedGoogle Scholar
  15. 15.
    Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc Natl Acad Sci USA 103:10086–1009CrossRefPubMedGoogle Scholar
  16. 16.
    Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 98:3820–3825CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang Y, Xu W, Li X, Tang Y, Xie P, Ji Y, Fan L, Chen Q. Association between PPARGC1A gene polymorphisms and coronary artery disease in a Chinese population. Clin Exp Pharmacol Physiol 35:1172–1177Google Scholar
  18. 18.
    Iglseder B, Oberkofler H, Felder TK, Klein K, Tregouet DA, Patsch W (2006) Associations of PPARGC1A haplotypes with plaque score but not with intima-media thickness of carotid arteries in middle-aged subjects. Stroke 37:2260–2265CrossRefPubMedGoogle Scholar
  19. 19.
    Esterbauer H, Oberkofler H, Linnemayr V, Iglseder B, Hedegger M, Wolfsgruber B, Fastner G, Krempler F, Patsch W (2002) Peroxisome proliferator-activated receptor-gamma coactivator-1 gene locus: associations with obesity indices in middle-aged women. Diabetes 51:1281–1286CrossRefPubMedGoogle Scholar
  20. 20.
    Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, Kimura S, Kadowaki T (2002) A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia 45:740–743CrossRefPubMedGoogle Scholar
  21. 21.
    Oberkofler H, Holz B, Esterbauer H, Xie M, Iglseder B, Krempler F, Paulweber B, Patsch W (2003) Peroxisome proliferatoractivated receptor-gamma coactivator-1 gene locus: associations with hypertension in middle-aged men. Hypertension 41:368–372CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang SL, Lu WS, Yan L, Wu MC, Xu MT, Chen LH, Cheng H (2007) Association between peroxisome proliferator-activated receptor-gamma coactivator-1alpha gene polymorphisms and type 2 diabetes in southern Chinese population: role of altered interaction with myocyte enhancer factor 2C. Chin Med J (Engl) 120:1878–1885Google Scholar
  23. 23.
    Puddu P, Puddu GM, Cravero E, Rosati M, Muscari A (2008) The molecular sources of reactive oxygen species in hypertension. Blood Press 17:70–77CrossRefPubMedGoogle Scholar
  24. 24.
    Fukui T, Yoshiyama M, Hanatani A, Omura T, Yoshikawa J, Abe J (2001) Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochem Biophys Res Commun 281:1200–1206CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang C, Hein TW, Wang W, Kuo L (2003) Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ Res 92:322–329CrossRefPubMedGoogle Scholar
  26. 26.
    Koabayashi N, Ohno T, Yoshida K, Fukushima H, Mamada Y, Nomura M, Hirata H, Machida Y, Shinoda M, Suzuki N, Matsuoka H (2008) Cardioprotective mechanism of telmisartan via PPAR-gamma-eNOS pathway in Dahl salt-sensitive hypertensive rats. Am J Hypertens 21:576–581CrossRefGoogle Scholar
  27. 27.
    San Jose G, Fortuno A, Beloqui O, Diez J, Zalba G (2008) NADPH oxidase CYBA polymorphisms, oxidative stress and cardiovascular diseases. Clin Sci (Lond) 114:173–182CrossRefGoogle Scholar
  28. 28.
    Guzik TJ, West NE, Black E, McDonalds D, Ratnatunga C, Pillai R, Channon KM (2000) Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation 102:1744–1747PubMedGoogle Scholar
  29. 29.
    De Backer G, Ambrosioni E, Borch-Johnsen K, Brotons C, Cifkova R, Dallongeville J, Ebrahim S, Faergeman O, Graham I, Mancia G, Cats VM, Orth-Gomer K, Perk J, Pyorala K, Rodicio JL, Sans S, Sansoy V, Sechtem U, Silber S, Thomsen T, Wood D (2004) European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts). Atherosclerosis 173:381–391PubMedGoogle Scholar
  30. 30.
    Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined — a consensus document of The Joint Euro pean Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36:959–969CrossRefPubMedGoogle Scholar
  31. 31.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  32. 32.
    Kuroda J, Kitazono T, Ago T, Ninomiya T, Ooboshi H, Kamouchi M, Kumai Y, Hagiwara N, Yoshimura S, Tamaki K, Kusuda K, Fujii K, Nagao T, Okada Y, Toyoda K, Nakane H, Sigumori H, Yamashita Y, Wakuwaga Y, Asano K, Tanizaki Y, Kiyohara Y, Ibayashi S, Iida M (2007) NAD(P)H oxidase p22phox C242T polymorphism and ischemic stroke in Japan: the Fukuoka Stroke Registry and the Hisayama study. Eur J Neurol 14:1091–1097CrossRefPubMedGoogle Scholar
  33. 33.
    Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622CrossRefPubMedGoogle Scholar
  34. 34.
    Vanttinen M, Nuutila P, Kuulasmaa T, Pihlajamaki J, Hallsten J, Hallsten K, Virtanan KA, Lautamaki R, Peltoniemi P, Takala T, Viljanen AP, Knuuti J, Laakso M (2005) Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor δ gene are associated with skeletal muscle glucose uptake. Diabetes 54:3587–3591CrossRefPubMedGoogle Scholar
  35. 35.
    Cahilly C, Ballantyne CM, Lim DS, Gotto A, Marian AJ (2000) A variant of p22phox, involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis. Circ Res 86:391–395PubMedGoogle Scholar
  36. 36.
    Nasti S, Spallarossa P, Altieri P, Garibaldi S, Fabbi P, Polito L, Bacino L, Brunelli C, Barsotti A, Ghigliotti G (2006) C242T polymorphism in CYBA gene (p22phox) and risk of coronary artery disease in a population of Caucasian Italians. Dis Markers 22:167–173PubMedGoogle Scholar
  37. 37.
    He MA, Cheng LX, Jiang CZ, Zeng HS, Wang J, Wang F, Chen Y, Yang M, Tan H, Zheng HY, Hu FB, Wu TC (2007) Associations of polymorphism of P22phox C242T, plasma levels of vitamin E, and smoking with coronary heart disease in China. Am Heart J 640:e1–e6Google Scholar
  38. 38.
    Macias-Reyes A, Rodriguez-Esparragon F, Caballero-Hidalgo A, Hernandez-Trujilo Y, Medina A, Rodriguez-Perez JC (2008) Insight into the role of CYBA A640G and C242T gene variants and coronary heart disease risk. A case-control study. Free Radic Res 42:89–92Google Scholar
  39. 39.
    Azumi H, Inoue N, Takeshita S, Rikitake Y, Kawashima S, Hayashi Y, Itoh H, Yokoyama M (1999) Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 100: 1494–1498PubMedGoogle Scholar
  40. 40.
    Hathaway CA, Heistad DD, Piegors DJ, Miller FJ Jr (2002) Regression of atherosclerosis in monkeys reduces vascular superoxide levels. Circ Res 90:277–283CrossRefPubMedGoogle Scholar
  41. 41.
    De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK (1998) Tumor necrosis factor α activates a p22phox based NADH oxidase in vascular smooth muscle. Biochem J 329:653–657PubMedGoogle Scholar
  42. 42.
    Rupin A, Paysant J, Sansilvestri-Morel P, Lembrez N, Lacoste JM, Cordi A, Verbeuren TJ (2004) Role of NADPH oxidase-mediated superoxide production in the regulation of E-selectin expression by endothelial cells subjected to anoxia/reoxygenation. Cardiovasc Res 63:323–330CrossRefPubMedGoogle Scholar
  43. 43.
    Zak I, Sarecka B, Krauze J (2008) Synergistic effects between 561A > C and 98G > T polymorphisms of E-selectin gene and hypercholesterolemia in determining the susceptibility to coronary artery disease. Heart Vessels 23:257–263CrossRefPubMedGoogle Scholar
  44. 44.
    Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M, Heitzer T, Stasch JP, Griendling KK, Harrison DG, Bohm M, Meinertz T, Munzel T (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis. Circulation 99:2027–2033PubMedGoogle Scholar
  45. 45.
    Jiang YJ, Lu B, Kim P, Elias PM, Feingold KR (2006) Regulation of ABCA1 expression in human keratinocytes and murine epidermis. J Lipid Res 47:2248–2258CrossRefPubMedGoogle Scholar
  46. 46.
    Vosper H, Patel L, Graham TL, Khoudoli GA, Hill A, Macphee CH, Pinto I, Smith SA, Suckling KE, Wolf CR, Palmer CN (2001) The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages. J Biol Chem 276:44258–44265CrossRefPubMedGoogle Scholar
  47. 47.
    Dickhout JG, Basseri S, Austin RC (2008) Macrophage function and its impact on atherosclerotic lesion composition, progression, and stability: the good, the bad, and the ugly. Artherioscler Thromb Vasc Biol 28:1413–1415CrossRefGoogle Scholar
  48. 48.
    Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM, Curtiss LK (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302:453–457CrossRefPubMedGoogle Scholar
  49. 49.
    Li Y, Gerbod-Giannone MC, Seitz H, Cui D, Thorp E, Tall AR, Matsushima GK, Tabas I (2006) Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the Mer receptor. J Biol Chem 281: 6707–6717CrossRefPubMedGoogle Scholar
  50. 50.
    Jones CB, Sane DC, Herrington DM (2003) Matrix metalloproteinases: A review of their structure and role in coronary syndrome. Cardiovasc Res 59:812–823CrossRefPubMedGoogle Scholar
  51. 51.
    Inoue I, Goto S, Matsunaga T, Nakajima T, Awata T, Hokari S, Komoda T, Katayama S (2001) The ligands/activators for peroxisome proliferator-activated receptor α (PPARα) and PPARγ increase Cu2+, Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism 50:3–11CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2010

Authors and Affiliations

  • Alexey G. Nikitin
    • 1
  • Dimitry A. Chistiakov
    • 1
  • Larissa O. Minushkina
    • 2
  • Dmitry A. Zateyshchikov
    • 2
  • Valery V. Nosikov
    • 1
  1. 1.Department of Molecular DiagnosticsNational Research Center GosNIIgenetikaMoscowRussia
  2. 2.Department of Russian PresidentScientific-Educational Medical Center of General ManagementMoscowRussia

Personalised recommendations