Heart and Vessels

, Volume 23, Issue 1, pp 9–15 | Cite as

Insulin resistance functionally limits endothelium-dependent coronary vasodilation in nondiabetic patients

  • Noriyuki Fujii
  • Kazufumi Tsuchihashi
  • Hisataka Sasao
  • Mariko Eguchi
  • Hideyuki Miurakami
  • Mamoru Hase
  • Katsuhiro Higashiura
  • Satoshi Yuda
  • Akiyoshi Hashimoto
  • Tetsuji Miura
  • Nobuyuki Ura
  • Kazuaki Shimamoto
Original Article

Abstract

Insulin resistance (IR) is now considered to be a risk factor for coronary arterial atherosclerosis and is likely to be involved in a limited endothelium-dependent vasodilatory function in peripheral circulation. We investigated whether IR impairs endothelial vasodilator function in the noninfarcted coronary artery. In 14 nondiabetic patients (10 males, 66 ± 6 years) who were selected from 214 patients underwent IR evaluation by glucose clamp, a Doppler flow wire was used to measure coronary flow changes (percent volume flow index, %VFI) during intracoronary administration of papaverin (10 mg) and stepwise administration of acetylcholine (Ach; 1, 3, 10 μg/ml per minute) into the non-infarcted left circumflex coronary artery. Insulin resistance was comparatively evaluated by an euglycemic hyperinsulinemic glucose clamp (M value, mg/m2 per minute) or by a 75g-oral glucose tolerance test (120-min immunoreactive insulin; 120′ IRI, pmol/l). Eight patients (57%) were defined as having IR on the basis of results obtained by both the glucose clamp method (M values <167 mg/m2 per minute) and 120′ IRI (>384 pmol/l). There was no difference between papaverin-induced %VFI increases in IR and non-IR subjects (328% ± 43% vs. 361% ± 87%). However, IR subjects showed significantly lower Ach-induced %VFI increases in a dose-dependent manner (P < 0.05), especially when low (1 μg/ml per minute) and moderate (3 μg/ml per minute) doses of Ach were used (165% ± 18% or 248% ± 29% in non-IR subjects vs. 130% ± 20% or 183% ± 41% in IR subjects, P < 0.001, respectively). Moreover, %VFI increase at a low dose of Ach infusion significantly correlated with M values or 120′ IRI ([%VFI Ach 1 μg] = 85.9 + 0.35 [M values], r = 0.58, P = 0.038; [%VFI Ach 1 μg] = 176.8 − 0.47·[120′ IRI], r = −0.57, P = 0.035). Insulin resistance limits endothelium-dependent coronary vasodilation in association with the severity of IR in non-diabetic patients.

Key words

Insulin Coronary artery disease Glucose clamp Doppler flow wire Acetylcholine 

References

  1. 1.
    Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038PubMedCrossRefGoogle Scholar
  2. 2.
    Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607PubMedCrossRefGoogle Scholar
  3. 3.
    DeFronzo RA, Ferrannini E (1991) Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194PubMedCrossRefGoogle Scholar
  4. 4.
    Kaplan NM (1989) The deadly quartet. Upper-body obesity, glucose intolerance, hypertrigly-ceridemia, and hypertension. Arch Intern Med 149:1514–1520PubMedCrossRefGoogle Scholar
  5. 5.
    Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S (1987) Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 36:54–59PubMedCrossRefGoogle Scholar
  6. 6.
    Despers JP, Lamarche B, Mauriege P, Cantin B, Dagenais GR, Moorjani S, Lupien PJ (1996) Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 334:952–957CrossRefGoogle Scholar
  7. 7.
    Ruige JB, Assendelft WJ, Dekker JM, Kostense PJ, Heine RJ, Bouter LM (1998) Insulin and risk of cardiovascular disease: a meta-analysis. Circulation 97:996–1001PubMedGoogle Scholar
  8. 8.
    Hikita N, Tsuchihashi K, Nakata T, Ura N, Shimamoto K (1998) Involvement of glucose metabolism abnormalities and insulin resistance in atherosclerotic coronary artery disease: semiquantitative coronary angiography study (in Japanese with English abstract). J Cardiol 32:291–300PubMedGoogle Scholar
  9. 9.
    Tsuchihashi K, Hikita N, Hase M, Agata J, Saitoh S, Nakata T, Ura N, Shimamoto K (1999) Role of hyperinsulinemia in atherosclerotic coronary arterial disease: studies of semi-quantitative coronary angiography. Internal Medicine 38:691–697PubMedCrossRefGoogle Scholar
  10. 10.
    Shinozaki K, Suzuki M, Ikebuchi M, Hara Y, Harano Y (1996) Demonstration of insulin resistance in coronary artery disease documented with angiography. Diabetes Care 19:1–7PubMedCrossRefGoogle Scholar
  11. 11.
    Howard G, O’Leary DH, Zaccaro D, Haffner S, Rewers M, Hamman R, Selby JV, Saad MF, Savage P, Bergman R (1996) Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation 93:1809–1817PubMedGoogle Scholar
  12. 12.
    Mansfield MW, Heywood DM, Grant PJ (1996) Circulating levels of factor VII, fibrinogen, and von Willebrand factor and features of insulin resistance in first-degree relatives of patients with NIDDM. Circulation 94:2171–2176PubMedGoogle Scholar
  13. 13.
    Baron AD. Hemodynamic actions of insulin (1994) Am J Physiol 267(2 Pt 1):E187–E202PubMedGoogle Scholar
  14. 14.
    Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97:2601–2610PubMedCrossRefGoogle Scholar
  15. 15.
    Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, Jacob S, Matthaei S, Rett K, Häring HU (2000) Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation 101:1780–1784PubMedGoogle Scholar
  16. 16.
    Bøtker HE, Sonne HS, Bagger JP, Nielsen TT (1997) Impact of impaired coronary flow reserve and insulin resistance on myocardial energy metabolism in patients with syndrome X. Am J Cardiol 79:1615–1622PubMedCrossRefGoogle Scholar
  17. 17.
    Watanabe I, Kawamura I, Satoh K, Nagao K, Kushiro T, Kanmatsuse K (1999) Effect of insulin resistance on the endothelial vasomotor function of the coronary artery of nondiabetic patients. Jpn Circ J 63:589–592PubMedCrossRefGoogle Scholar
  18. 18.
    Quiñones MJ, Hernandez-Pampaloni M, Schelbert H, Bulnes-Enriquez I, Jimenez X, Hernandez G, De La Rosa R, Chon Y, Yang H, Nicholas SB, Modilevsky T, Yu K, Van Herle K, Castellani LW, Elashoff R, Hsueh WA (2004) Coronary vasomotor abnormalities in insulin-resistant individuals. Ann Intern Med 140:700–708PubMedGoogle Scholar
  19. 19.
    Di Carli MF, Janisse J, Grunberger G, Ager J (2003) Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 41:1387–1393PubMedCrossRefGoogle Scholar
  20. 20.
    Prior JO, Quiñones MJ, Hernandez-Pampaloni M, Facta AD, Schindler TH, Sayre JW, Hsueh WA Schelbert HR (2005) Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation 111:2291–2298PubMedCrossRefGoogle Scholar
  21. 21.
    Wada M, Hara H, Nakamura M (2006) A change in the pattern of vasospasm after stenting in a patient with vasospastic angina. Heart Vessels 21:388–391PubMedCrossRefGoogle Scholar
  22. 22.
    Nemes A, Forster T, Csanády M (2007) Simultaneous echocardiographic evaluation of coronary flow velocity reserve and aortic distensibility in hypertension. Heart Vessels 22:73–78PubMedCrossRefGoogle Scholar
  23. 23.
    Oimatsu H, Saitoh S, Ura N, Shimamoto K (2000) A practical index for evaluation of insulin resistance (in Japanese). J Japan Diabetes Soc 43:205–213Google Scholar
  24. 24.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  25. 25.
    DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223PubMedGoogle Scholar
  26. 26.
    Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR (1993) Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 42:1017–1025PubMedCrossRefGoogle Scholar
  27. 27.
    Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD (1995) Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 91:635–640PubMedGoogle Scholar
  28. 28.
    Yokoyama I, Ohtake T, Momomura S, Yonekura K, Woo-Soo S, Nishikawa J, Sasaki Y, Omata M (1998) Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 47:119–124PubMedCrossRefGoogle Scholar
  29. 29.
    DeFronzo RA (1992) Insulin resistance, hyperinsulinemia, and coronary artery disease: a complex metabolic web. J Cardiovasc Pharmacol 20(suppl 11):S1–S16PubMedCrossRefGoogle Scholar
  30. 30.
    Ferrannini E, Mari A (1998) How to measure insulin sensitivity. J Hypertens 16:895–906PubMedCrossRefGoogle Scholar
  31. 31.
    Iimura O (1996) Insulin resistance and hypertension in Japanese. Hypertens Res 19(suppl I):S1–S8PubMedCrossRefGoogle Scholar
  32. 32.
    Miyazaki Y, Murakami H, Hirata A, Fukuoka M, Masuda A, Ura N, Shimamoto K (1998) Effects of the angiotensin converting enzyme inhibitor temocapril on insulin sensitivity and its effects on renal sodium handling and the pressor system in essential hypertensive patients. Am J Hypertens 11:962–970PubMedCrossRefGoogle Scholar
  33. 33.
    Kaplan NM (1992) Effects of antihypertensive therapy on insulin resistance. Hypertension 19(suppl I):I-116–I-118Google Scholar

Copyright information

© Springer Japan 2008

Authors and Affiliations

  • Noriyuki Fujii
    • 1
  • Kazufumi Tsuchihashi
    • 1
  • Hisataka Sasao
    • 1
  • Mariko Eguchi
    • 1
  • Hideyuki Miurakami
    • 1
  • Mamoru Hase
    • 1
  • Katsuhiro Higashiura
    • 1
  • Satoshi Yuda
    • 1
  • Akiyoshi Hashimoto
    • 1
  • Tetsuji Miura
    • 1
  • Nobuyuki Ura
    • 1
  • Kazuaki Shimamoto
    • 1
  1. 1.Second Department of Internal MedicineSapporo Medical University School of MedicineSapporoJapan

Personalised recommendations