Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

LICOM Model Datasets for the CMIP6 Ocean Model Intercomparison Project


The datasets of two Ocean Model Intercomparison Project (OMIP) simulation experiments from the LASG/IAP Climate Ocean Model, version 3 (LICOM3), forced by two different sets of atmospheric surface data, are described in this paper. The experiment forced by CORE-II (Co-ordinated Ocean–Ice Reference Experiments, Phase II) data (1948–2009) is called OMIP1, and that forced by JRA55-do (surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis) data (1958–2018) is called OMIP2. First, the improvement of LICOM from CMIP5 to CMIP6 and the configurations of the two experiments are described. Second, the basic performances of the two experiments are validated using the climatological-mean and interannual time scales from observation. We find that the mean states, interannual variabilities, and long-term linear trends can be reproduced well by the two experiments. The differences between the two datasets are also discussed. Finally, the usage of these data is described. These datasets are helpful toward understanding the origin system bias of the fully coupled model.


本文描述了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 气候系统海洋模式第三版 (LICOM3) 参与海洋模式比较计划 (OMIP) 的两个模拟试验数据集. 两个模拟试验采用不同大气表面强迫数据, 采用规范的海洋-海冰参考试验第二阶段 (Co-ordinated Ocean–Ice Reference Experiments, Phase II, CORE-II) 作为外强迫的试验称为 OMIP 第一阶段数据集 (OMIP1,1948-2009), 采用来自日本 55 年大气再分析表面数据驱动海洋-海冰模式 (JRA55-do) 强迫试验称为 OMIP 第二阶段数据集 (OMIP2, 1958-2018). 首先, 文章描述了 LICOM 从 CMIP5 到 CMIP6 的改进和试验基本设置. 其次, 利用来自观测气侯态和年际变化数据, 对两个试验的模拟性能进行检验. 结果表明模式的两个试验均很好再现了平均态、 年际变化和长期线性趋势. 同时, 讨论了两个模拟试验数据间的差异. 最后, 介绍了数据集的使用情况. 这两个数据集的提供有助于了解全耦合模式的系统偏差来源.

Data availability statement

The data that support the findings of this study are available from https://esgf-nodes.llnl.gov/projects/cmip6/. The citation for OMIP1 is “CAS FGOALS-f3-L model output prepared for CMIP6 OMIP omip1. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3413”. The citation for OMIP2 is “CAS FGOALS-f3-L model output prepared for CMIP6 OMIP omip2. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3419”.


  1. Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, https://doi.org/10.1007/s00376-012-2113-9.

  2. Canuto, V. M., A. Howar., Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceano-gr., 31, 1413–1426, https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2.

  3. Canuto, V. M., A. Howar., Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceano-gr., 32, 240–264, https://doi.org/10.1175/1520-0485(2002)032<0240:otpivd>2.0.co;2.

  4. Conkright, M. E., R. A. Locarnin., H. E. Garcia, T. D. O’Brie., T. P. Boye., C. Stephens, and J. I. Antonov, 2002: World ocean atlas 2001: Objective analyses, data statistics, and figures, CD-ROM documentation. National Oceanographic Data Center, Silver Spring, MD, 17 pp.

  5. Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for Earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications, 26, 31–42, https://doi.org/10.1177/1094342011428141.

  6. Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935–938, https://doi.org/10.1126/science.1141304.

  7. Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 73, 76–107, https://doi.org/10.1016/j.ocemod.2013.10.005.

  8. Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 97, 65–90, https://doi.org/10.1016/j.ocemod.2015.11.007.

  9. Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 1891–1910, https://doi.org/10.1175/JPO2785.1.

  10. Fetterer, F., K. Knowles, W. Meie., M. Savoie, and A. Windnagel, 2017: Updated daily. Sea Ice Index, Version 3. [Indicate subset used]. NSIDC, Boulder, Colorado, USA, https://doi.org/10.7265/N5K072F8.

  11. Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMI-OCM>2.0.CO;2.

  12. Griffies, S. M., and Coauthors, 2009: Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26, 1–46, https://doi.org/10.1016/j.ocemod.2008.08.007.

  13. Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30(20), 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.

  14. Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric Research, https://doi.org/10.5065/D6KK98Q6.

  15. Lee, S. K., R. Lumpki., M. O. Baringe., C. S. Meinen, M. Goe., S. F. Don., H. Lopez, and S. G. Yeager, 2019: Global meridional overturning circulation inferred from a data-constrained ocean & sea-ice model. Geophys. Res. Lett., 46, 1521–1530, https://doi.org/10.1029/2018GL080940.

  16. Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543–560, https://doi.org/10.1007/s00376-012-2140-6.

  17. Li, Y. W., H. L. Liu, and P. F. Lin, 2019: The role of thickness dif-fusivity coefficients in a climate ocean model. PhD dissertation, 142 pp.

  18. Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013a: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., 30, 175–192, https://doi.org/10.1007/s00376-012-2042-7.

  19. Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013b: Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases. Adv. Atmos. Sci., 30(3), 819–840, https://doi.org/10.1007/s00376-012-2137-1.

  20. Lin, P. F., and Coauthors, 2016: A coupled experiment with LICOM2 as the ocean component of CESM1. Journal of Meteorological Research, 30 (1), 76–92, https://doi.org/10.1007/s13351-015-5045-3.

  21. Liu, H. L., P. F. Li., Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2.0. Acta Meteorologica Sinica, 26(3), 318–329, https://doi.org/10.1007/s13351-012-0305-y.

  22. Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562, https://doi.org/10.1175/JPO3130.1.

  23. Madec, G., and M. Imbard, 1996: A global ocean mesh to overcome the north pole singularity. Climate Dyn., 12(6), 381–388, https://doi.org/10.1007/BF00211684.

  24. Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126(2), 251–273, https://doi.org/10.1006/jcph.1996.0136.

  25. Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16, 1337–1351, https://doi.org/10.1175/1520-0442-16.9.1337.

  26. Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154–1158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

  27. St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.

  28. Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 2079–2087, https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

  29. Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean—sea-ice models (JRA55-do). Ocean Modelling, 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002.

  30. Xiao, C., 2006: Adoption of a two-step shape-preserving advec-tion scheme in an OGCM and its coupled experiment. M.S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 89 pp. (in Chinese)

  31. Yu, R. C., 1994: A two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11(4), 479–490, https://doi.org/10.1007/BF02658169.

  32. Yu, Y. Q., S. L. Tang, H. L. Li., P. F. Lin, and X. L. Li., 2018: Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate. Chinese Journal of Atmospheric Sciences, 42 (4), 877–889, https://doi.org/10.3878/j.issn.1006-9895.1805.17284. (in Chinese)

  33. Yu, Z. P., H. L. Liu, and P. F. Lin, 2017: A numerical study of the influence of tidal mixing on Atlantic meridional overturning circulation (AMOC) Simulation. Chinese Journal of Atmospheric Sciences, 41 (5), 1087–1100, https://doi.org/10.3878/j.issn.1006-9895.1702.16263. (in Chinese)

  34. Zhang, X. H., and X. Z. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6(1), 43–61, https://doi.org/10.1007/BF02656917.

Download references


This study was supported by the National Key R&D Program for Developing Basic Sciences (Grant Nos. 2016YFC1401401 and 2016YFC1401601), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDC01000000), and the National Natural Science Foundation of China (Grants Nos. 41576026, 41576025, 41776030, 41931183 and 41976026).

Author information

Correspondence to Hailong Liu.

Ethics declarations

No potential conflict of interest was reported by the authors.

Additional information

Article Highlights

• The OMIP1 and OMIP2 simulation datasets produced by LICOM3 are described.

• The mean states, interannual variabilities, and long-term linear trends can be reproduced well by the two experiments.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, P., Yu, Z., Liu, H. et al. LICOM Model Datasets for the CMIP6 Ocean Model Intercomparison Project. Adv. Atmos. Sci. 37, 239–249 (2020). https://doi.org/10.1007/s00376-019-9208-5

Download citation

Key words

  • OMIP
  • CMIP6
  • ocean–sea-ice model
  • model bias


  • 海洋模式比较计划
  • 耦合模式比较计划
  • 海洋-海冰模式
  • 模式偏差