Advertisement

Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications

  • 27 Accesses

References

  1. Aires, F., C. Prigent, F. Bernardo, C. Jiménez, R. Saunders, and P. Brunel, 2011: A tool to estimate land-surface emissivities at microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteorol. Soc., 137, 690–699, https://doi.org/10.1002/qj.803.

  2. Bi, L., and P. Yang, 2017: Improved ice particle optical property simulations in the ultraviolet to far-infrared regime. Journal of Quantitative Spectroscopy and Radiative Transfer, 189, 228–237, https://doi.org/10.1016/jjqsrt.2016.12.007.

  3. Borbas, E., G. Hulley, W. Feltz, R. Knuteson, and S. Hook, 2017: Combined ASTER and MODIS Emissivity over Land (CAMEL) product. Proc. 21st Int. TOV Study Conf., Darmstadt, Germany.

  4. Chen, M., and F. Z. Weng, 2016: Modeling land surface roughness effect on soil microwave emission in community surface emissivity model. IEEE Trans. Geosci. Remote Sens., 54, 1716–1726, https://doi.org/10.1109/TGRS.2015.2487885.

  5. Clough, S. A., M. J. Iacono, and J. L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 761–15 785, https://doi.org/10.1029/92JD01419.

  6. Cox, C., and W. Munk, 1954: Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13, 198–227.

  7. Evans, K. F., and G. L. Stephens, 1991: A new polarized atmospheric radiative transfer model. Journal of Quantitative Spectroscopy and Radiative Transfer, 46, 413–423, https://doi.org/10.1016/0022-4073(91)90043-P.

  8. Han, Y., F. Z. Weng, Q. H. Liu, and P. van Delst, 2007: A fast radiative transfer model for SSMIS upper atmosphere sounding channels. J. Geophys. Res., 112, D11121, https://doi.org/10.1029/2006JD008208.

  9. Kan, W., P. Dong, and S. Ding, 2019: Validation and inter-comparison of ARMS fast transmittance model for FY-4A GIIRS with RTTOV. J. Quant. Spectrosc. Radiat. Transfer., in press.

  10. Lawrence, H., N. Bormann, A. Geer, and S. English, 2017: Uncertainties in the dielectric constant model for seawater in FASTEM and implications for the cal/val of new microwave instruments. Proc. 21st Int. TOV Study Conf., Darmstadt, Germany, 11/29–12/3.

  11. Le Marshall, J., and Coauthors, 2007: The joint center for satellite data assimilation. Bull. Amer. Meteor. Soc., 88, 329–340, https://doi.org/10.1175/BAMS-88-3-329.

  12. Liu, Q. H., and F. Z. Weng, 2002: A microwave polarimetric two-stream radiative transfer model. J. Atmos. Sci., 59, 2396–2402, https://doi.org/10.1175/1520-0469(2002)059<2396:AMPTSR>2.0.CO;2.

  13. Liu, Q. H., and F. Z. Weng, 2006: Advanced doubling-adding method for radiative transfer in planetary atmospheres. J. Atmos. Sci., 63, 3459–3465, https://doi.org/10.1175/JAS3808.1.

  14. Liu, Q. H., F. Z. Weng, and S. J. English, 2011: An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sens., 49, 1238–1250, https://doi.org/10.1109/TGRS.2010.2064779.

  15. McMillin, L. M., and H. E. Fleming, 1976: Atmospheric transmittance of an absorbing gas: A computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres. Appl. Opt., 15, 358–363, https://doi.org/10.1364/AO.15.000358.

  16. Rothman, L. S., and Coauthors, 2013: The HITRAN 2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002.

  17. Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteorol. Soc., 125, 1407–1425, https://doi.org/10.1002/qj.1999.49712555615.

  18. Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018.

  19. Schulz, F. M., K. Stamnes, and F. Weng, 1999: Vdisort: An improved and generalized discrete ordinate method for polarized (vector) radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 61, 105–122, https://doi.org/110.1016/S0022-4073(97)00215-X.

  20. Shi, J. C., L. M. Jiang, L. X. Zhang, K. S. Chen, J. P. Wigneron, and A. Chanzy, 2005: A parameterized multifrequency-polarization surface emission model. IEEE Trans. Geosci. Remote Sens., 43, 2831–2841, https://doi.org/10.1109/TGRS.2005.857902.

  21. Weng, F. Z., 1992: A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-I. theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 47, 19–33, https://doi.org/10.1016/0022-4073(92)90076-G.

  22. Weng, F. Z., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 3799–3807, https://doi.org/10.1175/2007JAS2112.1.

  23. Weng, F. Z., 2017: Passive Microwave Remote Sensing of the Earth: For Meteorological Applications. Wiley-VCH, 384 pp.

  24. Weng, F. Z., and N. C. Grody, 2000: Retrieval of ice cloud parameters using a microwave imaging radiometer. J. Atmos. Sci., 57, 1069–1081, https://doi.org/10.1175/1520-0469(2000)057<1069:ROICPU>2.0.CO;2.

  25. Weng, F. Z., and Q. H. Liu, 2003: Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and Jacobian modeling in cloudy atmospheres. J. Atmos. Sci., 60, 2633–2646, https://doi.org/10.1175/1520-0469(2003)060<2633:SDAINW>2.0.CO;2.

  26. Weng, F. Z., B. H. Yan, and N. C. Grody, 2001: A microwave land emissivity model. J. Geophys. Res., 106, 20 115–20 123, https://doi.org/10.1029/2001JD900019.

  27. Wu, W. S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905–2916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

  28. Wu, X. Q., and W. L. Smith, 1997: Emissivity of rough sea surface for 8–13 µm: Modeling and verification. Appl. Opt., 36, 2609–2619, https://doi.org/10.1364/AO.36.002609.

  29. Yan, B. H., and F. Z. Weng, 2011: Effects of microwave desert surface emissivity on AMSU-A data assimilation. IEEE Trans. Geosci. Remote Sens., 49, 1263–1276, https://doi.org/10.1109/TGRS.2010.2091508.

  30. Yan, B. H., F. Z. Weng, and H. Meng, 2008: Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit. J. Geophys. Res., 113, D19206, https://doi.org/10.1029/2007JD009559.

  31. Yu, R. C., Y. Zhang, J. J. Wang, J. Li, H. M. Chen, J. D. Gong, and J. Chen, 2019: Recent progress in numerical atmospheric modeling in China. Adv. Atmos. Sci., 36(9), 938–960, https://doi.org/10.1007/s00376-019-8203-1.

  32. Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada, 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res., 118, 11 558–11 576, https://doi.org/10.1002/2013JD020405.

Download references

Acknowledgements

We would like to thank the support of the National Key Research and Development Program of China “Development of Meteorological Satellite Remote Sensing Technology and Platform for Global Monitoring, Assessments and Applications under the funding code of 2018YFC1506500”.

Author information

Correspondence to Fuzhong Weng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weng, F., Yu, X., Duan, Y. et al. Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications. Adv. Atmos. Sci. 37, 131–136 (2020) doi:10.1007/s00376-019-9170-2

Download citation