Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 12, pp 1393–1403 | Cite as

Interdecadal Modulation of AMO on the Winter North Pacific Oscillation-Following Winter ENSO Relationship

  • Shangfeng ChenEmail author
  • Linye Song
  • Wen Chen
Original Paper
  • 20 Downloads

Abstract

It is known that the wintertime North Pacific Oscillation (NPO) is an important extratropical forcing for the occurrence of an El Niño-Southern Oscillation (ENSO) event in the subsequent winter via the “seasonal footprinting mechanism” (SFM). This study reveals that the Atlantic Multidecadal Oscillation (AMO) can notably modulate the relationship between the winter NPO and the following winter ENSO. During the negative AMO phase, the winter NPO has significant impacts on the following winter ENSO via the SFM. In contrast, the influence of the winter NPO on ENSO is not robust at all during the positive AMO phase. Winter NPO-generated westerly wind anomalies over the equatorial western Pacific during the following spring are much stronger during negative than positive AMO phases. It is suggested that the AMO impacts the winter NPO-induced equatorial westerly winds over the western Pacific via modulating the precipitation climatology over the tropical central Pacific and via modulating the connection of the winter NPO with spring sea surface temperature in the tropical North Atlantic.

Key words

North Pacific Oscillation ENSO Atlantic Multidecadal Oscillation 

摘 要

前人研究指出冬季北太平洋涛动 (NPO) 可以通过“季节脚印机制”影响下一年冬季厄尔尼诺-南方涛动 (ENSO) 事件的发生. 本文研究发现北大西洋海温多年代际振荡 (AMO) 对冬季 NPO 与下一年冬季 ENSO 之间的联系存在显著的调制作用. 在 AMO 的负位相, 冬季 NPO 可以通过“季节脚印机制”影响下一年冬季 ENSO 事件. 然而, 在 AMO 正位相, 冬季 NPO 对下一年冬季 ENSO 的影响很弱. 分析表明, 只有在 AMO 负位相冬季 NPO 才可以在随后春季激发出显著的热带西太平洋异常西风, 而热带西太平洋的异常西风是冬季 ENSO 事件发生的重要触发因子. 进一步分析结果表明, AMO 主要通过调制热带中太平洋降水气候态以及调制 NPO 与春季热带北大西洋海温的关系来影响季节脚印机制, 从而影响 NPO-ENSO 之间的联系.

关键词

北太平洋涛动 (NPO) 厄尔尼诺-南方涛动 (ENSO) 北大西洋海温多年代际振荡 (AMO) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the two anonymous reviewers for their constructive suggestions, which helped to improve the paper. This study was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41605050, 41530425, 41775080, and 41605031) and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (Grant No. 2016QNRC001).

References

  1. Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15(16), 2205–2231,  https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.CrossRefGoogle Scholar
  2. Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 2885–2901,  https://doi.org/10.1175/2010JCLI3205.1.CrossRefGoogle Scholar
  3. Anderson, B. T., 2003: Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J. Geophys. Res., 108, ACL 9,  https://doi.org/10.1029/2003JD003805.Google Scholar
  4. Anderson, B. T., and E. Maloney, 2006: Interannual tropical pacific sea surface temperatures and their relation to preceding sea level pressures in the NCAR CCSM2. J. Climate, 19, 998–1012,  https://doi.org/10.1175/JCLI3674.1.CrossRefGoogle Scholar
  5. Barbero, R., J. T. Abatzoglou, and T. J. Brown, 2015: Seasonal reversal of the influence of El Niño-Southern oscillation on very large wildfire occurrence in the interior northwestern United States. Geophys. Res. Lett., 22, 3538–3545,  https://doi.org/10.1002/2015GL063428.CrossRefGoogle Scholar
  6. Battisti, D. S., and A. G. Hirst, 1989: Interannual variability in a tropical atmosphere-ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1712,  https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.CrossRefGoogle Scholar
  7. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172,  https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.CrossRefGoogle Scholar
  8. Burn, D. H., and P. H. Whitfield, 2015: Changes in floods and flood regimes in Canada. Canadian Water Resources Journal, 18, 139–150,  https://doi.org/10.1080/07011784.2015.1026844.Google Scholar
  9. Chang, T., H. H. Hsu, and C. Hong, 2016: Enhanced influences of tropical Atlantic SST on WNP-NIO atmosphere-ocean coupling since the early 1980s. J. Climate, 29, 6509–6525,  https://doi.org/10.1175/JCLI-D-15-0807.1.CrossRefGoogle Scholar
  10. Chen, S. F., and L. Y. Song, 2018: Impact of the winter north pacific oscillation on the surface air temperature over Eurasia and North America: Sensitivity to the index definition. Adv. Atmos. Sci., 35, 702–712,  https://doi.org/10.1007/s00376-017-7111-5.CrossRefGoogle Scholar
  11. Chen, S. F., and R. G. Wu, 2018: Impacts of winter NPO on subsequent winter ENSO: Sensitivity to the definition of NPO index. Climate Dyn., 50, 375–389,  https://doi.org/10.1007/s00382-017-3615-z.CrossRefGoogle Scholar
  12. Chen, S. F., W. Chen, and K. Wei, 2013a: Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic oscillation and ENSO. Adv. Atmos. Sci., 30, 1712–1724,  https://doi.org/10.1007/s00376-013-2296-8.CrossRefGoogle Scholar
  13. Chen, S. F., W. Chen, B. Yu, and H. F. Graf, 2013b: Modulation of the seasonal footprinting mechanism by the boreal spring Arctic oscillation. Geophys. Res. Lett., 40, 6384–6389,  https://doi.org/10.1002/2013GL058628.CrossRefGoogle Scholar
  14. Chen, S. F., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42(3–4), 973–989,  https://doi.org/10.1007/s00382-012-1654-z.CrossRefGoogle Scholar
  15. Chen, S. F., B. Yu, and W. Chen, 2015: An interdecadal change in the influence of the spring Arctic oscillation on the subsequent ENSO around the early 1970s. Climate Dyn., 44, 1109–1126,  https://doi.org/10.1007/s00382-014-2152-2.CrossRefGoogle Scholar
  16. Chen, S. F., R. G. Wu, and W. Chen, 2018a: A strengthened impact of November Arctic oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s. Climate Dyn., 51, 511–529,  https://doi.org/10.1007/s00382-017-3937-x.CrossRefGoogle Scholar
  17. Chen, S. F., B. Yu, W. Chen, and R. G. Wu, 2018b: A review of atmosphere-ocean forcings outside the tropical Pacific on the El Niño-Southern Oscillation occurrence. Atmosphere, 9, 439,  https://doi.org/10.3390/atmos9110439.CrossRefGoogle Scholar
  18. Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 2616–2631,  https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.CrossRefGoogle Scholar
  19. Duan, W. S., L. Y. Song, Y. Li, and J. Y. Mao, 2013: Modulation of PDO on the predictability of the interannual variability of early summer rainfall over south China. J. Geophys. Res., 118, 13008–13021,  https://doi.org/10.1002/2013JD019862.Google Scholar
  20. Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022,  https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.CrossRefGoogle Scholar
  21. Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U. S. Geophys. Res. Lett., 28, 2077–2080,  https://doi.org/10.1029/2000GL012745.CrossRefGoogle Scholar
  22. Furtado, J. C., E. Di Lorenzo, B. T. Anderson, and N. Schneider, 2012: Linkages between the North pacific oscillation and central tropical Pacific SSTs at low frequencies. Climate Dyn., 39, 2833–2846,  https://doi.org/10.1007/s00382-011-1245-4.CrossRefGoogle Scholar
  23. Geng, X., W. J. Zhang, M. F. Stuecker, P. Liu, F. F. Jin, and G. R. Tan, 2017: Decadal modulation of the ENSO-East Asian winter monsoon relationship by the Atlantic multidecadal oscillation. Climate Dyn., 49, 2531–2544,  https://doi.org/10.1007/s00382-016-3465-0.CrossRefGoogle Scholar
  24. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Q. J. Roy. Meteor. Soc., 106, 447–462,  https://doi.org/10.1002/qj.49710644905.CrossRefGoogle Scholar
  25. Graf, H. F., and D. Zanchettin, 2012: Central pacific El Niño, the “subtropical bridge, “ and Eurasian climate. J. Geophys. Res., 117, D01102,  https://doi.org/10.1029/2011JD016493.CrossRefGoogle Scholar
  26. Ham, Y. G., and J. S. Kug, 2015: Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 3103–3117,  https://doi.org/10.1007/s00382-015-2527-z.CrossRefGoogle Scholar
  27. Ham, Y. G., J. S. Kug, J. Y. Park, and F. F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern oscillation events. Nature Geoscience, 6, 112–116,  https://doi.org/10.1038/ngeo1686.CrossRefGoogle Scholar
  28. Hong, C. C., T. C. Chang, and H. H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res., 119, 3715–3372,  https://doi.org/10.1002/2013JD021394.CrossRefGoogle Scholar
  29. Jia, X. J., H. Lin, and J. Derome, 2009: The influence of tropical Pacific forcing on the Arctic oscillation. Climate Dyn., 32, 495–509,  https://doi.org/10.1007/s00382-008-0401-y.CrossRefGoogle Scholar
  30. Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829,  https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.CrossRefGoogle Scholar
  31. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472,  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  32. Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 1984–1985,  https://doi.org/10.1126/science.288.5473.1984.CrossRefGoogle Scholar
  33. Kim, S. T, and F. F. Jin, 2011: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36, 1609–1627,  https://doi.org/10.1007/s00382-010-0872-5.CrossRefGoogle Scholar
  34. Lengaigne, M., E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601–620,  https://doi.org/10.1007/s00382-004-0457-2.CrossRefGoogle Scholar
  35. Li, F., Y. J. Orsolini, H. J. Wang, Y. Q. Gao, and S. P. He, 2018: Modulation of the Aleutian-Icelandic low seesaw and its surface impacts by the Atlantic multidecadal oscillation. Adv. Atmos. Sci., 35, 95–105,  https://doi.org/10.1007/s00376-017-7028-z.CrossRefGoogle Scholar
  36. Li, X. C., S. P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change, 6, 275–279,  https://doi.org/10.1038/nclimate2840.CrossRefGoogle Scholar
  37. Linkin, M. E., and S. Nigam, 2008: The north pacific oscillation-west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 1979–1997,  https://doi.org/10.1175/2007JCLI2048.1.CrossRefGoogle Scholar
  38. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1080,  https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.CrossRefGoogle Scholar
  39. McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85, 677–696,  https://doi.org/10.1175/BAMS-85-5-677.CrossRefGoogle Scholar
  40. Nakamura, T., Y. Tachibana, M. Honda, and S. Yamane, 2006: Influence of the Northern Hemisphere annular mode on ENSO by modulating westerly wind bursts. Geophys. Res. Lett., 33, L07709,  https://doi.org/10.1029/2005GL025432.Google Scholar
  41. Neelin, J. D., D. S. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14261–14290,  https://doi.org/10.1029/97JC03424.CrossRefGoogle Scholar
  42. Park, J. H., and T. Li, 2019: Interdecadal modulation of El Niñotropical North Atlantic teleconnection by the Atlantic multidecadal oscillation. Climate Dyn., 52, 5345–5360,  https://doi.org/10.1007/s00382-018-4452-4.CrossRefGoogle Scholar
  43. Park, J. Y., S. W. Yeh, J. S. Kug, and J. Yoon, 2013: Favorable connections between seasonal footprinting mechanism and El Niño. Climate Dyn., 40, 1169–1181,  https://doi.org/10.1007/s00382-012-1477-y.CrossRefGoogle Scholar
  44. Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319–324,  https://doi.org/10.1007/s003820050284.CrossRefGoogle Scholar
  45. Rogers, J. C., 1981: The north pacific oscillation. J. Climatol., 1, 39–57,  https://doi.org/10.1002/joc.3370010106.CrossRefGoogle Scholar
  46. Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci., 45, 549–566,  https://doi.org/10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2.CrossRefGoogle Scholar
  47. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J. Climate, 21(10), 2283–2296,  https://doi.org/10.1175/2007JCLI2100.1.CrossRefGoogle Scholar
  48. Song, L. Y., Y. Li, and W. S. Duan, 2016: The influence of boreal winter extratropical north pacific oscillation on Australian spring rainfall. Climate Dyn., 47, 1181–1196,  https://doi.org/10.1007/s00382-015-2895-4.CrossRefGoogle Scholar
  49. Sun, C., F. Kucharski, J. P. Li, F. F. Jin, I. S. Kang, and R. Q. Ding, 2017: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nature Communications, 8, 15998,  https://doi.org/10.1038/ncomms15998.CrossRefGoogle Scholar
  50. Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926,  https://doi.org/10.1029/2001GL013435.CrossRefGoogle Scholar
  51. Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 2653–2667,  https://doi.org/10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2.CrossRefGoogle Scholar
  52. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian tele-connection: How does ENSO affect East Asian climate? J Climate, 13(9), 1517–1536,  https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  53. Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327–340,  https://doi.org/10.1007/s00382-012-1427-8.CrossRefGoogle Scholar
  54. Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multi-decadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708,  https://doi.org/10.1029/2007GL031601.Google Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Institute of Urban MeteorologyChina Meteorological AdministrationBeijingChina
  3. 3.College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations