Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 9, pp 961–974 | Cite as

Recent Progress in Dual-Polarization Radar Research and Applications in China

  • Kun ZhaoEmail author
  • Hao Huang
  • Mingjun Wang
  • Wen-Chau Lee
  • Gang Chen
  • Long Wen
  • Jing Wen
  • Guifu Zhang
  • Ming Xue
  • Zhengwei Yang
  • Liping Liu
  • Chong Wu
  • Zhiqun Hu
  • Sheng Chen
Review
Part of the following topical collections:
  1. National Report to the IUGG Centennial by CNC-IAMAS (2011–2018)

Abstract

Dual-polarization (dual-pol) radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar. The dual-pol parameters have been successfully utilized to investigate precipitation microphysics and improve radar quantitative precipitation estimation (QPE). The recent progress in dual-pol radar research and applications in China is summarized in four aspects. Firstly, the characteristics of several representative dual-pol radars are reviewed. Various approaches have been developed for radar data quality control, including calibration, attenuation correction, calculation of specific differential phase shift, and identification and removal of non-meteorological echoes. Using dual-pol radar measurements, the microphysical characteristics derived from raindrop size distribution retrieval, hydrometeor classification, and QPE is better understood in China. The limited number of studies in China that have sought to use dual-pol radar data to validate the microphysical parameterization and initialization of numerical models and assimilate dual-pol data into numerical models are summarized. The challenges of applying dual-pol data in numerical models and emerging technologies that may make significant impacts on the field of radar meteorology are discussed.

Keywords

dual-polarization radar quantitative precipitation estimation precipitation microphysics drop size distribution numerical model 

摘要

同常规多普勒雷达相比, 双偏振雷达可测量更多反映降水系统微物理信息的参数,因此被广泛用于研究降水微物理特征和改进雷达定量降水估测. 本文总结了我国近期双偏振雷达研究和应用的进展. 首先, 回顾了我国一些代表性的双偏振雷达特性和雷达数据质量控制方法, 包括雷达标定、衰减订正、比差分传播相移的计算,以及非气象回波识别和去除. 基于双偏振雷达的雨滴谱反演、水凝物相态分类和降雨估测产品, 揭示了我国典型降水系统内部的微物理特征和过程. 同时, 总结了双偏振雷达观测在我国数值模式微物理参数化方案评估、资料同化和模式初始场改进中的应用. 最后, 讨论了利用双偏振雷达观测改进数值模式面临的挑战和天气雷达技术发展的趋势, 及其对雷达气象学领域研究的影响.

关键词

双偏振雷达 定量降水估测 降水微物理 雨滴谱 数值模式 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was primarily supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC1501703 and 2018YFC1506404), the National Natural Science Foundation of China (Grant Nos. 41875053, 41475015 and 41322032), the National Fundamental Research 973 Program of China (Grant Nos. 2013CB430101 and 2015CB452800), the Open Research Program of the State Key Laboratory of Severe Weather, and the Key Research Development Program of Jiangsu Science and Technology Department (Social Development Program, No. BE2016732).

References

  1. Barnes, H. C., and R. A. Houze Jr., 2016: Comparison of observed and simulated spatial patterns of ice microphysical processes in tropical oceanic mesoscale convective systems. J. Geophys. Res., 121, 8269–8296,  https://doi.org/10.1002/2016JD025074.Google Scholar
  2. Blanchard, D. C., 1953: Raindrop size-distribution in hawaiian rains. J. Meteor., 10, 457–473,  https://doi.org/10.1175/1520-0469(1953)010<0457:RSDIHR>2.0.CO;2.CrossRefGoogle Scholar
  3. Bluestein, H. B., and Coauthors, 2014: Radar in atmospheric sciences and related research: Current systems, emerging technology, and future needs. Bull. Amer. Meteor. Soc., 95, 1850–1861,  https://doi.org/10.1175/BAMS-D-13-00079.1.CrossRefGoogle Scholar
  4. Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 664 pp.CrossRefGoogle Scholar
  5. Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnic, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829–840,  https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.CrossRefGoogle Scholar
  6. Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354–365,  https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.CrossRefGoogle Scholar
  7. Bringi, V. N., M. A. Rico-Ramirez, and M. Thurai, 2011: Rainfall estimation with an operational polarimetric C-band radar in the united kingdom: Comparison with a gauge network and error analysis. Journal of Hydrometeorology, 12, 935–954,  https://doi.org/10.1175/JHM-D-10-05013.1.CrossRefGoogle Scholar
  8. Carey, L. D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 1405–1433,  https://doi.org/10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.CrossRefGoogle Scholar
  9. Chandrasekar, V., L. Baldini, N. Bharadwaj, and P. L. Smith, 2015: Calibration procedures for global precipitation-measurement ground-validation radars. URSI Radio Science Bulletin, 355, 45–73,  https://doi.org/10.23919/URSIRSB.2015.7909473.Google Scholar
  10. Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973–1993,  https://doi.org/10.1175/2009JTECHA1236.1.CrossRefGoogle Scholar
  11. Chen, C., H. Xiao, L. Feng, Z.-F. Li, and J.-J. Zhou, 2014: A dual-polarimetric analysis of a strong hailstorm in Beijing. Journal of Anhui Agricultural Sciences, 42, 7511–7515, 7536, https://doi.org/10.3969/j.issn.0517-6611.2014.22.076. (in Chinese with English abstract)Google Scholar
  12. Chen, C., Z.-Q. Hu, S. Hu, and Y. Zhang, 2018: Preliminary analysis of data quality of guangzhou s-band polarimetric weather radar. Journal of Tropical Meteorology, 34, 59–67,  https://doi.org/10.16032/j.issn.1004-4965.2018.01.006. (in Chinese with English abstract)Google Scholar
  13. Chen, G., and Coauthors, 2017: Improving polarimetric C-band radar rainfall estimation with two-dimensional video disdrometer observations in eastern China. Journal of Hydrometeorology, 18, 1375–1391,  https://doi.org/10.1175/JHM-D-16-0215.1.CrossRefGoogle Scholar
  14. Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. Journal of Applied Meteorology and Climatology, 52, 2162–2186,  https://doi.org/10.1175/JAMC-D-12-0275.1.CrossRefGoogle Scholar
  15. Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary modes of global drop size distributions. J. Atmos. Sci., 75, 1453–1476,  https://doi.org/10.1175/JAS-D-17-0242.1.CrossRefGoogle Scholar
  16. Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed., Dover Publications, 562 pp.Google Scholar
  17. Du, M. Y., L. P. Liu, Z. Q. Hu, and R. Yu, 2012: Quality control of differential propagation phase shift for dual linear polarization radar. Journal ofApplied Meteorological Science, 23, 710–720,  https://doi.org/10.3969/j.issn.1001-7313.2012.06.008. (in Chinese with English abstract)Google Scholar
  18. Du, M.-Y., L.-P. Liu, and Z.-Q. Hu, 2013: System bias calibration of differential reflectivity for dual linear polarization radar. Plateau Meteorology, 32, 1174–1185. (in Chinese with English abstract)Google Scholar
  19. Feng, L., H. Xiao, and Y. Sun, 2018: A study on hydrometeor classification and application based on X-band dual-polarization radar measurements. Climatic and Environmental Research, 23, 366–386. (in Chinese with English abstract)Google Scholar
  20. Gao, W. H., C.-H. Sui, J. W. Fan, Z. Q. Hu, and L. Z. Zhong, 2016: A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations. J. Geophys. Res., 121, 13 735–13 752,  https://doi.org/10.1002/2015JD024196.Google Scholar
  21. Gao, Y.-F., Y.-D. Chen, G. David, I. Kyoko, and J.-Y. Ye, 2014: Analysis of JPOLE algorithm with a dual polarization radar in different precipitation processes. Journal of Tropical Meteorology, 30, 361–367,  https://doi.org/10.3969/j.issn.1004-4965.2014.02.017. (in Chinese with English abstract)Google Scholar
  22. Giangrande, S. E., R. McGraw, and L. Lei, 2013: An Application of Linear Programming to Polarimetric Radar Differential Phase Processing. Journal of Atmospheric and Oceanic Technology, 30, 1716–1729.CrossRefGoogle Scholar
  23. Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1992: Calibration of radars using polarimetric techniques. IEEE Trans. Geosci. Remote Sens., 30, 853–858,  https://doi.org/10.1109/36.175319.CrossRefGoogle Scholar
  24. Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N. Bringi, 2001: Rainfall estimation from polarimetric radar measurements: Composite algorithms immune to variability in raindrop shape-size relation. J. Atmos. Oceanic Technol., 18, 1773–1786,  https://doi.org/10.1175/1520-0426(2001)018<1773:REFPRM>2.0.CO;2.CrossRefGoogle Scholar
  25. Gu, J., Y.-J. Zhou, Z. Shi, and L. Huang, 2015: The evolution characteristic of hydrometeor in a thunderstorm. Journal of Chengdu University of Information Technology, 30, 505–511,  https://doi.org/10.3969/j.issn.1671-1742.2015.05.016. (in Chinese with English abstract)Google Scholar
  26. Hu, H. F., D. R. Chen, Z. G. Chu, and X. K. Wang, 2018: Effect of rotary joints of dual-polarization weather radar on zdr measurements. Meteorological Science and Technology, 46, 429–435,  https://doi.org/10.19517/j.1671-6345.20170310. (in Chinese with English abstract)Google Scholar
  27. Hu, Z. Q., and L. P. Liu, 2014: Applications of wavelet analysis in differential propagation phase shift data de-noising. Adv. Atmos. Sci., 31, 825–835,  https://doi.org/10.1007/s00376-013-3095-y.CrossRefGoogle Scholar
  28. Hu, Z. Q., L. P. Liu, and L. L. Wu, 2014: Comparison among several system biases calibration methods on C-band polarimetric radar. Plateau Meteorology, 33, 221–231. (in Chinese with English abstract)Google Scholar
  29. Huang, H., 2018: A research on optimization-based rainfall parameter retrieval using polarimetric radar data. PhD dissertation, Nanjing University, 178 pp. (in Chinese with English abstract)Google Scholar
  30. Huang, H., G. F. Zhang, K. Zhao, and S. E. Giangrande, 2017: A hybrid method to estimate specific differential phase and rainfall with linear programming and physics constraints. IEEE Trans. Geosci. Remote Sens., 55, 96–111,  https://doi.org/10.1109/TGRS.2016.2596295.CrossRefGoogle Scholar
  31. Huang, H., and Coauthors, 2018a: Quantitative precipitation estimation with operational polarimetric radar measurements in southern china: A differential phase-based variational approach. J. Atmos. Oceanic Technol., 35, 1253–1271,  https://doi.org/10.1175/JTECH-D-17-0142.1.CrossRefGoogle Scholar
  32. Huang, H., G. F. Zhang, K. Zhao, S. Liu, L. Wen, G. Chen, and Z. W. Yang, 2019: Uncertainty in retrieving raindrop size distribution from polarimetric radar measurements. J. Atmos. Oceanic Technol., 36, 585–605,  https://doi.org/10.1175/JTECH-D-18-0107.1.CrossRefGoogle Scholar
  33. Huang, X. Y., L. Zhang, X. Lu, Y. Y. Li, J. N. Yin, L. Ma, and S. Zhang, 2018b: Attenuation correction for C-band dual-polarization radar reflectivity factor and the accuracy improvement of precipitation estimation. Journal of the Meteorological Sciences, 38, 237–246. (in Chinese with English abstract)Google Scholar
  34. Hubbert, J., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643–648,  https://doi.org/10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.CrossRefGoogle Scholar
  35. Hubbert, J., V. Chandrasekar, V. N. Bringi, and P. Meischner, 1993: Processing and interpretation of coherentdual-polarized radar measurements. J. Atmos. Oceanic Technol., 10, 155–164,  https://doi.org/10.1175/1520-0426(1993)010<0155:PAIOCD>2.0.CO;2.CrossRefGoogle Scholar
  36. Hubbert, J. C., V. N. Bringi, and D. Brunkow, 2003: Studies of the polarimetric covariance matrix. Part I: Calibration methodology. J. Atmos. Oceanic Technol., 20, 696–706,  https://doi.org/10.1175/1520-0426(2003)20<696:SOTPCM>2.0.CO;2.CrossRefGoogle Scholar
  37. Hubbert, J. C., J. W. Wilson, T. M. Weckwerth, S. M. Ellis, M. Dixon, and E. Loew, 2018: S-pol’s polarimetric data reveal detailed storm features (and insect behavior). Bull. Amer. Meteor. Soc., 99, 2045–2060,  https://doi.org/10.1175/BAMS-D-17-0317.1.CrossRefGoogle Scholar
  38. Jung, Y., G. F. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228–2245,  https://doi.org/10.1175/2007MWR2083.1.CrossRefGoogle Scholar
  39. Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. Journal of Operational Meteorology, 1, 226–242,  https://doi.org/10.15191/nwajom.2013.0119.CrossRefGoogle Scholar
  40. Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. Journal of Applied Meteorology and Climatology, 47, 1940–1961,  https://doi.org/10.1175/2007JAMC1874.1.CrossRefGoogle Scholar
  41. Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. Journal of Applied Meteorology and Climatology, 49, 1247–1267,  https://doi.org/10.1175/2010JAMC2243.1.CrossRefGoogle Scholar
  42. Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 2042–2060,  https://doi.org/10.1175/JAS-D-11-0125.1.CrossRefGoogle Scholar
  43. Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 3052–3067,  https://doi.org/10.1175/JAS-D-13-0357.1.CrossRefGoogle Scholar
  44. Lee, G. W., 2006: Sources of errors in rainfall measurements by polarimetric radar: Variability of drop size distributions, observational noise, and variation of relationships between R and polarimetric parameters. J. Atmos. Oceanic Technol., 23, 1005–1028,  https://doi.org/10.1175/JTECH1899.1.CrossRefGoogle Scholar
  45. Lei, Y.-H., 2014: Attenuation correction of reflectivity factor for X-band dual-polarization radar. Journal of Chengdu University of Information Technology, 29, 586–589,  https://doi.org/10.3969/j.issn.1671-1742.2014.06.004. (in Chinese with English abstract)Google Scholar
  46. Li, Z. F., H. Xiao, Z. D. Yao, and L. Feng, 2015: Retrieval of raindrop size distribution by X-band dual-polarization radar. Climatic and Environmental Research, 20, 285–295,  https://doi.org/10.3878/j.issn.1006-9585.2014.14021. (in Chinese with English abstract)Google Scholar
  47. Liu, X. T., Q. L. Wan, H. Wang, H. Xiao, Y. Zhang, T. F. Zheng, and L. Feng, 2018: Raindrop size distribution parameters retrieved from guangzhou S-band polarimetric radar observations. Journal of Meteorological Research, 32, 571–583,  https://doi.org/10.1007/s13351-018-7152-4.CrossRefGoogle Scholar
  48. Luo, Y. L., and Coauthors, 2017: The southern China monsoon rainfall experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999–1013,  https://doi.org/10.1175/BAMS-D-15-00235.1.CrossRefGoogle Scholar
  49. Marzano, F. S., D. Scaranari, M. Montopoli, and G. Vulpiani, 2008: Supervised classification and estimation of hydrometeors from C-band dual-polarized radars: A bayesian approach. IEEE Trans. Geosci. Remote Sens., 46, 85–98,  https://doi.org/10.1109/TGRS.2007.906476.CrossRefGoogle Scholar
  50. Mei, Y., Z. Q. Hu, X. Y. Huang, and C. Chen, 2018: A study of convective clouds in the Tibetan Plateau based on dual polarimetric radar observations. Acta Meteorologica Sinica, 76, 1014–1028,  https://doi.org/10.11676/qxxb2018.037. (in Chinese with English abstract)Google Scholar
  51. Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730–748,  https://doi.org/10.1175/2008WAF2222205.1.CrossRefGoogle Scholar
  52. Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14, 3566–3586,  https://doi.org/10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2.CrossRefGoogle Scholar
  53. Posselt, D. J., X. L. Li, S. A. Tushaus, and J. R. Mecikalski, 2015: Assimilation of dual-polarization radar observations in mixed- and ice-phase regions of convective storms: Information content and forward model errors. Mon. Wea. Rev., 143, 2611–2636,  https://doi.org/10.1175/MWR-D-14-00347.1.CrossRefGoogle Scholar
  54. Ran, Y.-B., M. Sun, M.-Q. Gao, and H.-J. Wang, 2017: Study on hydrometeor identification based on deep learning. Journal of Chengdu University of Information Technology, 32, 590–596,  https://doi.org/10.16836/j.cnki.jcuit.2017.06.003. (in Chinese with English abstract)Google Scholar
  55. Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. Journal of Applied Meteorology and Climatology, 50, 873–894,  https://doi.org/10.1175/2010JAMC2363.1.CrossRefGoogle Scholar
  56. Ryzhkov, A. V., and D. Zrnić, 1995: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249–256,  https://doi.org/10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2.CrossRefGoogle Scholar
  57. Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005a: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502–515,  https://doi.org/10.1175/JAM2213.1.CrossRefGoogle Scholar
  58. Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005b: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 1138–1155,  https://doi.org/10.1175/JTECH1772.1.CrossRefGoogle Scholar
  59. Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69–76,  https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.CrossRefGoogle Scholar
  60. Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13, 271–275,  https://doi.org/10.1029/RS013i002p00271.CrossRefGoogle Scholar
  61. Sun, Y., H. Xiao, L. Feng, H.-L. Yang, C. Chen, and Y.-J. Zhou, 2015: A new method for the quality control of differential propagation phase shift for dual-polarization radar: The linear fitting and recurrence method. Journal of Chengdu University of Information Technology, 30, 421–427,  https://doi.org/10.3969/j.issn.1671-1742.2015.05.003. (in Chinese with English abstract)Google Scholar
  62. Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332–356,  https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.CrossRefGoogle Scholar
  63. Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764–1775,  https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.CrossRefGoogle Scholar
  64. Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 1053–1063,  https://doi.org/10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.CrossRefGoogle Scholar
  65. Vivekanandan, J., D. S. Zrnic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388,  https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.CrossRefGoogle Scholar
  66. Vivekanandan, J., G. F. Zhang, S. M. Ellis, D. Rajopadhyaya, and S. K. Avery, 2003: Radar reflectivity calibration using differential propagation phase measurement. Radio Sci., 38, 8049,  https://doi.org/10.1029/2002RS002676.CrossRefGoogle Scholar
  67. Wang, H., Q. L. Wan, J. F. Yin, and W. Y. Ding, 2016a: Application of the dual-polarization radar data in numerical modeling studies: Construction of the simulator. Acta Meteorologica Sinica, 74, 229–243,  https://doi.org/10.11676/qxxb2016.017. (in Chinese with English abstract)Google Scholar
  68. Wang, H., N. G. Wu, Q. L. Wan, and T. Zhan, 2018a: Analysis of s-band polarimetric radar observations of a hail-producing supercell. Acta Meteorologica Sinica, 76, 92–103,  https://doi.org/10.11676/qxxb2017.078.Google Scholar
  69. Wang, H., F. Kong, N. Wu, H. Lan, and J. Yin, 2019: An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer. Atmospheric Research, 226, 171–180,  https://doi.org/10.1016/j.atmosres.2019.04.009.CrossRefGoogle Scholar
  70. Wang, M. J., K. Zhao, M. Xue, G. F. Zhang, S. Liu, L. Wen, and G. Chen, 2016b: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res., 121, 12 415–12 433,  https://doi.org/10.1002/2016JD025307.Google Scholar
  71. Wang, M. J., K. Zhao, W.-C. Lee, and F. Q. Zhang, 2018b: Microphysical and kinematic structure of convective-scale elements in the inner rainband of typhoon matmo (2014) after landfall. J. Geophys. Res., 123, 6549–6564,  https://doi.org/10.1029/2018JD028578.CrossRefGoogle Scholar
  72. Wang, Y., 2018: Understanding and prediction of rainfall associated with landfalling tropical cyclones (UPDRAFT). Proceedings of 20th EGU General Assembly, 4–13 April 2018, Vienna, Austria, p. 2916.Google Scholar
  73. Wang, Y. T., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 2565–2578,  https://doi.org/10.1175/2009JTECHA1358.1.CrossRefGoogle Scholar
  74. Wei, Q., Z.-Q. Hu, and L.-P. Liu, 2014: Comparative analysis of five filtering methods of differential propagation phase shift for polarization radar subtitle as needed. Journal of Chengdu University of Information Technology, 29, 596–602,  https://doi.org/10.3969/j.issn.1671-1742.2014.06.006. (in Chinese with English abstract)Google Scholar
  75. Wei, Q., Z. Q. Hu, L. P. Liu, and L. L. Wu, 2016: C-band polarization radar data preprocessing and its application to rainfall estimation. Plateau Meteorology, 35, 231–243. (in Chinese with English abstract)Google Scholar
  76. Wen, G., A. Protat, P. T. May, X. Z. Wang, and W. Moran, 2015: A cluster-based method for hydrometeor classification using polarimetric variables. Part I: Interpretation and analysis. J. Atmos. Oceanic Technol., 32, 1320–1340,  https://doi.org/10.1175/JTECH-D-13-00178.1.CrossRefGoogle Scholar
  77. Wen, G., A. Protat, P. T. May, W. Moran, and M. Dixon, 2016: A cluster-based method for hydrometeor classification using polarimetric variables. Part II: Classification. J. Atmos. Oceanic Technol., 33, 45–60,  https://doi.org/10.1175/JTECH-D-14-00084.1.CrossRefGoogle Scholar
  78. Wen, J., 2017: Observing and simulating the microphysial structure of a subtropical squall line in Eastern China. Nanjing University, 72 pp. (in Chinese)Google Scholar
  79. Wen, J., and Coauthors, 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res., 122, 8033–8050,  https://doi.org/10.1002/2016JD026346.Google Scholar
  80. Wen, L., and Coauthors, 2018: Drop size distribution characteristics of seven typhoons in China. J. Geophys. Res., 123, 6529–6548,  https://doi.org/10.1029/2017JD027950.Google Scholar
  81. Wu, C., L. P. Liu, M. Wei, B. Z. Xi, and M. H. Yu, 2018a: Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci., 35, 296–316,  https://doi.org/10.1007/s00376-017-6241-0.CrossRefGoogle Scholar
  82. Wu, D., and Coauthors, 2018b: Kinematics and microphysics of convection in the outer rainband of typhoon nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 2147–2159,  https://doi.org/10.1175/MWR-D-17-0320.1.CrossRefGoogle Scholar
  83. Wu, H., and X. Y. Huang, 2014: Schemes for attenuation correction of radar reflectivity factor, ground clutter discrimination and compensation of a X-band dual-polarization radar. Journal of the Meteorological Sciences, 34, 32–38,  https://doi.org/10.3969/2012jms.0183. (in Chinese with English abstract)Google Scholar
  84. Wu, W., Y.-J. Zhou, X.-M. Li, and L. Zhai, 2017: Comparative study on quality control methods of X-band dual-polarization radar data. Journal of Chengdu University of Information Technology, 32, 19–27,  https://doi.org/10.16836/j.cnki.jcuit.2017.01.004. (in Chinese with English abstract)Google Scholar
  85. Xue, M., 2016: Preface to the special issue on the “observation, prediction and analysis of severe convection of China” (OPACC) national “973” project. Adv. Atmos. Sci., 33, 1099–1101,  https://doi.org/10.1007/s00376-016-0002-3.CrossRefGoogle Scholar
  86. Yang, J., K. Zhao, and G. Zhang, 2017: A bayesian hydrometeor classification algorithm for C-band polarimetric radar. Proc. 38th Conf. on Radar Meteorology.Google Scholar
  87. Zhang, G. F., 2016: Weather Radar Polarimetry. CRC Press, 322 pp.CrossRefGoogle Scholar
  88. Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830–841,  https://doi.org/10.1109/36.917906.CrossRefGoogle Scholar
  89. Zhang, G. F., and Coauthors, 2019: Current status and future challenges of weather radar polarimetry: Bridging the gap between radar meteorology/hydrology/engineering and numerical weather prediction. Adv. Atmos. Sci. 36, 571–588,  https://doi.org/10.1007/s00376-019-8172-4.CrossRefGoogle Scholar
  90. Zhang, J. Y., C. A. Zhang, Y. Ge, and J. J. Zhu, 2018: Characteristics of x-band dual-polarization doppler radar products during strong tornado around typhoon mujigae in foshan. Meteorological Science and Technology, 46, 163–169,  https://doi.org/10.19517/j.1671-6345.20170094. (in Chinese with English abstract)Google Scholar
  91. Zhang, X.-T., W.-T. Li, Y. Peng, and M.-X. Yin, 2017a: Analysis of the characteristics of polarimetric weather radar for a super-cell hail in Qingyuan. Guangdong Meteorology, 39, 41–44, 51,  https://doi.org/10.3969/j.issn.1007-6190.2017.04.010. (in Chinese with English abstract)Google Scholar
  92. Zhang, Y., D.-M. Hu, and H.-Y. Li, 2017b: Preliminary application of a dual polarization weather radar in guangzhou during a short-range intensive rain. Guangdong Meteorology, 39, 26–29,  https://doi.org/10.3969/j.issn.1007-6190.2017.02.006. (in Chinese with English abstract)Google Scholar
  93. Zhang, Y., C.-C. Tian, and C. Luo, 2017c: Preliminary analysis of quantitative precipitation estimation using Guangzhou dual-polarization weather radar. Guangdong Meteorology, 39, 73–76,  https://doi.org/10.3969/j.issn.1007-6190.2017.03.018. (in Chinese)Google Scholar
  94. Zhao, P., and Coauthors, 2018: The third atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the tibetan plateau and its effects. Bull. Amer. Meteor. Soc., 99, 757–776,  https://doi.org/10.1175/BAMS-D-16-0050.1.CrossRefGoogle Scholar
  95. Zheng, J. F., J. Zhang, K. Y. Zhu, X. Q. Gao, and T. Zhang, 2014: Analysis of dual polarization weather radar rainfall measuring errors and hydrometeor identification. Meteorological Science and Technology, 42, 364–372,  https://doi.org/10.3969/j.issn.1671-6345.2014.03.002. (in Chinese with English abstract)Google Scholar
  96. Zrnic, D. S., V. M. Melnikov, and J. K. Carter, 2006: Calibrating differential reflectivity on the WSR-88D. J. Atmos. Oceanic Technol., 23, 944–951,  https://doi.org/10.1175/JTECH1893.1.CrossRefGoogle Scholar
  97. Giangrande, S. E., R. McGraw, and L. Lei, 2013: An Application of Linear Programming to Polarimetric Radar Differential Phase Processing. Journal of Atmospheric and Oceanic Technology, 30, 1716–1729.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kun Zhao
    • 1
    • 2
    Email author
  • Hao Huang
    • 1
    • 2
  • Mingjun Wang
    • 1
    • 2
  • Wen-Chau Lee
    • 3
  • Gang Chen
    • 1
  • Long Wen
    • 1
  • Jing Wen
    • 1
  • Guifu Zhang
    • 1
    • 4
  • Ming Xue
    • 1
    • 4
  • Zhengwei Yang
    • 1
  • Liping Liu
    • 2
  • Chong Wu
    • 2
  • Zhiqun Hu
    • 2
  • Sheng Chen
    • 5
  1. 1.Key Laboratory of Mesoscale Severe Weather of Ministry of Education and School of Atmospheric SciencesNanjing UniversityNanjingChina
  2. 2.State Key Laboratory of Severe Weather and Joint Center for Atmospheric Radar Research of China Meteorological Administration and Nanjing UniversityChinese Academy of Meteorological SciencesBeijingChina
  3. 3.National Center for Atmospheric ResearchBoulderUSA
  4. 4.School of Meteorology and Advanced Radar Research CenterUniversity of OklahomaNormanUSA
  5. 5.School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster StudiesSun Yat-sen UniversityGuangzhouChina

Personalised recommendations