Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 12, pp 1404–1416 | Cite as

Decadal Changes in Interannual Dependence of the Bay of Bengal Summer Monsoon Onset on ENSO Modulated by the Pacific Decadal Oscillation

  • Xiaofei Wu
  • Jiangyu MaoEmail author
Original Paper

Abstract

Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Niño-Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface temperature (SST) reanalysis datasets over the period 1900–2017. Decadal changes exist in the dependence of the BOBSM onset on ENSO, varying with the Pacific Decadal Oscillation (PDO). A higher correlation between the BOBSM onset and ENSO arises during the warm PDO epochs, with distinct late (early) onsets following El Niño (La Niña) events. In contrast, less significant correlations occur during the cold PDO epochs. The mechanism for the PDO modulating the ENSO-BOBSM onset relationship is through the variations in SST anomaly (SSTA) patterns. During the warm PDO epochs, the superimpositions of the PDO-related and ENSO-related SSTAs lead to the SSTA distribution of an El Niño (La Niña) event exhibiting significant positive (negative) SSTAs over the tropical central-eastern Pacific and Indian Ocean along with negative (positive) SSTAs, especially over the tropical western Pacific (TWP), forming a strong zonal interoceanic SSTA gradient between the TWP and tropical Indian Ocean. Significant anomalous lower tropospheric easterlies (westerlies) together with upper-tropospheric westerlies (easterlies) are thus induced over the BOB, favoring an abnormally late (early) BOBSM onset. During the cold PDO epochs, however, the superimpositions of PDO-related SSTAs with El Niño-related (La Niña-related) SSTAs lead to insignificant SSTAs over the TWP and a weak zonal SSTA gradient, without distinct circulation anomalies over the BOB favoring early or late BOBSM onsets.

Key words

decadal change Bay of Bengal summer monsoon onset ENSO Pacific Decadal Oscillation 

摘 要

本文基于 NCEP-1、 JRA-55 和 ERA-20C 大气再分析资料以及 HadISST 海温再分析资料, 研究了 1900–2017 年间孟加拉湾夏季风 (BOBSM) 爆发年际异常与厄尔尼诺-南方涛动 (ENSO)的关系. 统计分析表明, BOBSM 爆发早晚与 ENSO 事件的依赖关系存在年代际差异, 而且这种年代际变化特征显著地受太平洋年代际振荡 (PDO) 所调控. 在 PDO 正相位期间, El Niño (La Niña) 事件很大可能导致 BOBSM 爆发异常偏晚(早);相反, 在 PDO 负相位期间, BOBSM 爆发早晚与 ENSO 事件并无显著相关关系. 进一步研究表明, PDO 调制 BOBSM 爆发年际异常与 ENSO 依赖关系的物理机制是通过 PDO 有关的海温异常改变 ENSO 有关的海温异常空间结构, 激发不同类型的大气环流异常而影响 BOBSM 爆发时间. 在 PDO 正相位期间, PDO 有关的海温异常与 ENSO 有关的海温异常相叠加使得 El Niño (La Niña) 事件在热带中东太平洋和热带印度洋海温均呈现显著的正(负)异常, 而在热带西太平洋海温则表现为显著的负(正)异常, 从而在热带西太平洋与热带印度洋之间形成了很强的纬向海温异常梯度. 这种纬向海温异常梯度势必在对流层低层激发显著的东风(西风)异常, 同时在对流层高层伴随西风(东风)异常, 进而导致BOBSM爆发异常偏晚(早). 然而, 在 PDO 负相位期间, 无论是 El Niño 年还是 La Niña 年, 热带西太平洋的海温异常均不显著, 因而热带大洋间的纬向海温异常梯度较弱, 无法在孟加拉湾地区激发出有利于 BOBSM 爆发偏早或偏晚的显著大气环流异常.

关键词

年代际变化 孟加拉湾季风爆发 ENSO PDO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was jointly supported by the National Key Research and Development Program of China (Grant No. 2018YFC1506004), the Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA19070404 and QYZDY-SSW-DQC018), the Natural Science Foundation of China (Grant Nos. 41705065, 41876020 and 41730963), the SOA Program on Global Change and Air-Sea Interactions (Grant No. GASI-IPOVAI-03), the Foundation of Sichuan Education Department (Grant No. 18ZB0122), and the Open Foundation of the Plateau Atmosphere and Environment Key Laboratory of Sichuan Province (Grant No. PAEKL-2017-Y6).

References

  1. Chen, W., J. Feng, and R. G. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622–635,  https://doi.org/10.1175/JCLI-D-12-00021.1.CrossRefGoogle Scholar
  2. Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022,  https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.CrossRefGoogle Scholar
  3. Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 2682–2698,  https://doi.org/10.1175/JCLI-D-13-00015.1.CrossRefGoogle Scholar
  4. Feng, J. Q., D. X. Hu, and L. J. Yu, 2013: Role of western Pacific oceanic variability in the onset of the Bay of Bengal summer monsoon. Adv. Atmos. Sci., 30, 219–234,  https://doi.org/10.1007/s00376-012-2040-9.CrossRefGoogle Scholar
  5. Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 2715–2725,  https://doi.org/10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.CrossRefGoogle Scholar
  6. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 102, 447–462,  https://doi.org/10.1002/qj.49710644905.CrossRefGoogle Scholar
  7. Jiang, X. W., and J. P. Li, 2011: Influence of the annual cycle of sea surface temperature on the monsoon onset. J. Geophys. Res., 112, D10105,  https://doi.org/10.1029/2010JD015236.CrossRefGoogle Scholar
  8. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472,  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  9. Kim, J.-W., S.-W., Yeh, and E.-C. Chang, 2014: Combined effect of El Niño-Southern Oscillation and Pacific Decadal Oscillation on the East Asian winter monsoon. Climate Dyn., 42, 957–971,  https://doi.org/10.1007/s00382-013-1730-z.CrossRefGoogle Scholar
  10. Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48,  https://doi.org/10.2151/jmsj.2015-001.CrossRefGoogle Scholar
  11. Kumar, K. K., B Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 2156–2159,  https://doi.org/10.1126/science.284.5423.2156.CrossRefGoogle Scholar
  12. Liu, B. Q., G. X. Wu, J. Y. Mao, and J. H. He, 2013: Genesis of the South Asian high and its impact on the Asian summer monsoon onset. J. Climate, 22, 2976–2991,  https://doi.org/10.1175/JCLI-D-12-00286.1.CrossRefGoogle Scholar
  13. Liu, B. Q., G. X. Wu, and R. C. Ren, 2015: Influences of ENSO on the vertical coupling of atmospheric circulation during the onset of South Asian summer monsoon. Climate Dyn., 45, 1859–1875,  https://doi.org/10.1007/s00382-014-2439-3.CrossRefGoogle Scholar
  14. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1080,  https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.CrossRefGoogle Scholar
  15. Mao, J. Y., and G. X. Wu, 2007: Interannual variability in the onset of the summer monsoon over the Eastern Bay of Bengal. Theor. Appl. Climatol., 89, 155–170,  https://doi.org/10.1007/s00704-006-0265-1.CrossRefGoogle Scholar
  16. Mao, J. Y., G. X. Wu, and Y. M. Liu, 2003: Study on the variation in the configuration of subtropical anticyclone and its mechanism during seasonal transition-Part I: Climatological features of subtropical high structure. Acta Meteorologica Sinica, 17, 274–286.Google Scholar
  17. Mao, J. Y., J. C. L. Chan, and G. X. Wu, 2004: Relationship between the onset of the South China Sea summer monsoon and the structure of the Asian subtropical anticyclone. J. Meteor. Soc. Japan, 82, 845–859,  https://doi.org/10.2151/jmsj.2004.845.CrossRefGoogle Scholar
  18. Mao, J. Y., J. C. L. Chan, and G. X. Wu, 2011: Interannual variations of early summer monsoon rainfall over South China under different PDO backgrounds. International Journal of Climatology, 31, 847–862,  https://doi.org/10.1002/joc.2129.CrossRefGoogle Scholar
  19. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407,  https://doi.org/10.1029/2002JD002670.CrossRefGoogle Scholar
  20. Stickler, A., and Coauthors, 2014: ERA-CLIM: Historical surface and upper-air data for future reanalyses. Bull. Amer. Meteor. Soc., 95, 1419–1430,  https://doi.org/10.1175/BAMS-D-13-00147.1.CrossRefGoogle Scholar
  21. Wang, L., W. Chen, and R. H. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon. Geophys. Res. Lett., 35, L20702,  https://doi.org/10.1029/2008GL035287.CrossRefGoogle Scholar
  22. Wang, X., D. X. Wang, W. Zhou, and C. Y. Li, 2012: Inter-decadal modulation of the influence of La Niña events on Mei-yu rainfall over the Yangtze River valley. Adv. Atmos. Sci., 29, 157–168,  https://doi.org/10.1007/s00376-011-1021-8.CrossRefGoogle Scholar
  23. Watanabe, T., and K. Yamazaki, 2014: Decadal-scale variation of South Asian summer monsoon onset and its relationship with the Pacific Decadal Oscillation. J. Climate, 27, 5163–5173,  https://doi.org/10.1175/JCLI-D-13-00541.1.CrossRefGoogle Scholar
  24. Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 451–14 510,  https://doi.org/10.1029/97JC02719.CrossRefGoogle Scholar
  25. Wu, G. X., and Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913–927,  https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.CrossRefGoogle Scholar
  26. Wu, R. G., and B. Wang, 2002: A contrast of the East Asian summer monsoon-ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 3266–3279,  https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.CrossRefGoogle Scholar
  27. Wu, X. F., and J. Y. Mao, 2016: Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific Decadal Oscillation. Climate Dyn., 47, 3203–3220,  https://doi.org/10.1007/s00382-016-3021-y.CrossRefGoogle Scholar
  28. Wu, X. F., and J. Y. Mao, 2018: Spatial and interannual variations of spring rainfall over eastern China in association with PDO-ENSO events. Theor. Appl. Climatol., 134, 935–953,  https://doi.org/10.1007/s00704-017-2323-2.CrossRefGoogle Scholar
  29. Xue, X., W. Chen, S. F. Chen, and J. Feng, 2018: PDO modulation of the ENSO impact on the summer South Asian high. Climate Dyn., 50, 1393–1411,  https://doi.org/10.1007/s00382-017-3692-z.CrossRefGoogle Scholar
  30. Zhou, W., X. Wang, T. J. Zhou, C. Y. Li, and J. C. L. Chan, 2007: Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteorol. Atmos. Phys., 98, 283–293,  https://doi.org/10.1007/s00703-007-0263-6.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment ChangeChengdu University of Information TechnologyChengduChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations