Advertisement

Advances in Atmospheric Sciences

, Volume 37, Issue 2, pp 229–238 | Cite as

Effect of Aerosol Particles on Orographic Clouds: Sensitivity to Autoconversion Schemes

  • Hui Xiao
  • Yan YinEmail author
  • Pengguo Zhao
  • Qilin Wan
  • Xiantong Liu
Original Paper

Abstract

Aerosol particles can serve as cloud condensation nuclei (CCN) to influence orographic clouds. Autoconversion, which describes the initial formation of raindrops from the collision of cloud droplets, is an important process for aerosol-cloud-precipitation systems. In this study, seven autoconversion schemes are used to investigate the impact of CCN on orographic warm-phase clouds. As the initial cloud droplet concentration is increased from 100 cm−3 to 1000 cm−3 (to represent an increase in CCN), the cloud water increases and then the rainwater is suppressed due to a decrease in the autoconversion rate, leading to a spatial shift in surface precipitation. Intercomparison of the results from the autoconversion schemes show that the sensitivity of cloud water, rainwater, and surface precipitation to a change in the concentration of CCN is different from scheme to scheme. In particular, the decrease in orographic precipitation due to increasing CCN is found to range from −87% to −10% depending on the autoconversion scheme. Moreover, the surface precipitation distribution also changes significantly by scheme or CCN concentration, and the increase in the spillover (ratio of precipitation on the leeward side to total precipitation) induced by increased CCN ranges from 10% to 55% under different autoconversion schemes. The simulations suggest that autoconversion parameterization schemes should not be ignored in the interaction of aerosol and orographic cloud.

Key words

orographic cloud precipitation autoconversion aerosol particles 

摘 要

气溶胶可以作为云凝结核影响地形云的微物理结构, 进而影响降水. 在此过程中, 云雨自动转化是用于描述云滴通过碰并形成初始雨滴的过程, 是气溶胶-云-降水相互作用中重要的过程之一. 本文采用七种云雨自动转化方案研究气溶胶作为云凝结核对地形云的影响, 当初始云滴数浓度从100cm-3变化至 1000cm-3 (表征云气溶胶的变化) 时, 云雨自动转化率逐渐降低, 云中云水含量增加, 雨水含量减少, 地面降水总量减少且向下游方向移动. 通过对比不同云雨自动转化方案得到, 在不同方案下云凝结核浓度变化对云水、 雨水和地面降水的影响也不同, 尤其是, 地面降水的变化幅度在-87%至-10%之间. 同时, 地面降水分布对云凝结核的响应也与云雨自动转化方案选取有关, 地形背风坡的降水量占总降水量的比例在 10%-55%之间变化. 因此, 在讨论气溶胶与地形云相互作用时云雨自动转化方案的评估是必不可少.

关键词

地形云 降水 云雨自动转化 气溶胶 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was jointly sponsored by the National Key Basic Research and Development Program of China (Grant No. 2018YFC1505702), the National Natural Science Foundation of China (Grant No. 41705120, 41590873, 41975138), Weather Modification Ability Construction Project of Northwest China (Grant No. ZQC-R18211), and a Guangdong Province Science and Technology Project (Grant No. 2017B020244002). All simulations in this paper were performed using the computational resources of the Guangzhou Institute of Tropical and Marine Meteorology. The model data in this study are available upon request from the authors via xh_8646@163.com or xiaoh@gd121.cn.

References

  1. Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227–1230,  https://doi.org/10.1126/science.245.4923.1227.CrossRefGoogle Scholar
  2. Alizadeh-Choobari, O., 2018: Impact of aerosol number concentration on precipitation under different precipitation rates. Meteorological Applications, 25, 596–605, https://doi.org/110.1002/met.1724.CrossRefGoogle Scholar
  3. Alizadeh-Choobari, O., and M. Gharaylou, 2017: Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation. Atmos. Res., 185, 53–64,  https://doi.org/10.1016/j.atmosres.2016.10.021.CrossRefGoogle Scholar
  4. Alpert, P., N. Halfon, and Z. Levin, 2008: Does air pollution really suppress precipitation in Israel? J. Appl. Meteorol. Climatol., 47, 933–943,  https://doi.org/10.1175/2007JAMC1803.1.CrossRefGoogle Scholar
  5. Beheng, K. D., 1994: A parameterization of warm cloud micro-physical conversion processes. Atmos. Res., 33, 193–206,  https://doi.org/10.1016/0169-8095(94)90020-5.CrossRefGoogle Scholar
  6. Berry, E. X., 1968: Modification of the warm rain process. 1st National Conference on Weather Modification, American Meteorology Society, New York, 81–85.Google Scholar
  7. Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538,  https://doi.org/10.1029/2002GL016855.CrossRefGoogle Scholar
  8. Chuang, C. C., J. T. Kelly, J. S. Boyle, and S. Xie, 2012: Sensitivity of aerosol indirect effects to cloud nucleation and autoconversion parameterizations in short-range weather forecasts during the May 2003 aerosol IOP. J. Adv. Model. Earth Syst., 4, M09001,  https://doi.org/10.1029/2012MS000161.CrossRefGoogle Scholar
  9. Fan, J., L. R. Leung, P. J. DeMott, J. M. Comstock, B. Singh, D. Rosenfeld, J. M. Tomlinson, A. White, K. A. Prather, P. Minnis, J. K. Ayers, and Q. Min, 2014: Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust. Atmos. Chem. Phys., 14, 81–101,  https://doi.org/10.5194/acp-14-81-2014.CrossRefGoogle Scholar
  10. Ghan, S. J., H. Abdul-Razzak, A. Nenes, Y. Ming, X. Liu, M. Ovchinnikov, B. Shipway, N. Meskhidze, J. Xu, and X. Shi, 2011: Droplet nucleation: Physically-based parameterizations and comparative evaluation. J. Adv. Model. Earth Syst., 3, M10001,  https://doi.org/10.1029/2011MS000074.Google Scholar
  11. Givati, A., and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteorol., 43, 1038–1056,  https://doi.org/10.1175/1520-0450(2004)043b1038:QPSDTAN2.0.CO;2.CrossRefGoogle Scholar
  12. Halfon, N., Z. Levin, and P. Alpert, 2009: Temporal rainfall fluctuations in Israel and their possible link to urban and air pollution effects. Environ. Res. Lett., 4, 025001,  https://doi.org/10.1088/1748-9326/4/2/2025001.CrossRefGoogle Scholar
  13. Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001,  https://doi.org/10.1029/2011RG000365.CrossRefGoogle Scholar
  14. Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus A, 55, 301–316,  https://doi.org/10.3402/tellusa.v55i4.14577.CrossRefGoogle Scholar
  15. Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulation. Meteor. Monogr., 88 pp.Google Scholar
  16. Khain, A., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environ. Res. Lett., 4, 015004,  https://doi.org/10.1088/1748-9326/4/1/015004.CrossRefGoogle Scholar
  17. Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229–243,  https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.CrossRefGoogle Scholar
  18. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol., 22, 1065–1092,  https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.CrossRefGoogle Scholar
  19. Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 1539–1548,  https://doi.org/10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.CrossRefGoogle Scholar
  20. Lynn B., A. Khain, D. Rosenfeld, and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225,  https://doi.org/10.1029/2006JD007537.CrossRefGoogle Scholar
  21. Michibata, T., and T. Takemura, 2015: Evaluation of autoconversion schemes in a single model framework with satellite observations. J. Geophys. Res. Atmos., 120,  https://doi.org/10.1002/2015JD023818-T.
  22. Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 2839–2861,  https://doi.org/10.1175/JAS3980.CrossRefGoogle Scholar
  23. Morrison, H., J. A. Curry, and V. I. Khvorostyanoy, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665–1677,  https://doi.org/10.1175/JAS3446.1.CrossRefGoogle Scholar
  24. Muhlbauer, A., and U. Lohmann, 2008: Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different dynamical flow regimes. J. Atmos. Sci., 65, 2522–2542,  https://doi.org/10.1175/2007JAS2492.1.CrossRefGoogle Scholar
  25. Muhlbauer, A., T. Hashino, L. Xue, A. Teller, U. Lohmann, R. M. Rasmussen, I. Geresdi, and Z. Pan, 2010: Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys., 10, 8173–8196,  https://doi.org/10.5194/acp-10-8173-2010.CrossRefGoogle Scholar
  26. Planche, C., J. H. Marsham, P. R. Field, K. S. Carslaw, A. A. Hill, G. W. Mann, and B. J. Shipway, 2015: Precipitation sensitivity to autoconversion rate in numerical weather-prediction model. Q. J. R. Meteorol. Soc., 141, 2032–2044,  https://doi.org/10.1002/qj.2497.CrossRefGoogle Scholar
  27. Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114, D00K02,  https://doi.org/10.1029/2008JD011575.CrossRefGoogle Scholar
  28. Rosenfeld, D., and A. Givati, 2006: Evidence of orographic precipitation suppression by air pollution-induced aerosols in the western United States. J. Appl. Meteorol. Climatol., 45, 893–911,  https://doi.org/10.1175/JAM2380.1.CrossRefGoogle Scholar
  29. Seifert, A., A. Khain, A. Pokrovsky, and K. D. Beheng, 2006: A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics. Atmos. Res., 80, 46–66,  https://doi.org/10.1016/j.atmosres.2005.06.009.CrossRefGoogle Scholar
  30. Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265–281,  https://doi.org/10.1016/S0169-8095(01)00126-0.CrossRefGoogle Scholar
  31. Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001,  https://doi.org/10.1029/2011RG00369.CrossRefGoogle Scholar
  32. Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636–3658,  https://doi.org/10.1175/JAS-D-13-0305.1.CrossRefGoogle Scholar
  33. Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J. Appl. Meteor., 19, 1037–1063,  https://doi.org/10.1175/1520-0450(1980)019<1037:ANIOSF>2.0.CO;2.CrossRefGoogle Scholar
  34. Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. Atmos. Sci., 44, 3139–3149,  https://doi.org/10.1175/1520-0469(19877)044<3139:AENSTT>2.0.CO;2.CrossRefGoogle Scholar
  35. Xiao, H., Y. Yin, L. Jin, Q. Chen, and J. Chen, 2014: Simulation of aerosol effects on orographic clouds and precipitation using WRF model with a detailed bin microphysics scheme. Atmos. Sci. Let., 15, 134–139,  https://doi.org/10.1002/asl2.480.CrossRefGoogle Scholar
  36. Xiao, H., Y. Yin, Q. Chen, and P. Zhao, 2016: Impact of aerosol and freezing level on orographic clouds: A sensitivity study. Atmos. Res., 176–177, 19–28,  https://doi.org/10.1016/j.atmosres.2016.02.014.CrossRefGoogle Scholar
  37. Xiao, H., Y. Yin, L. Jin, Q. Chen, and J. Chen, 2015: Simulation of the effects of aerosol on mixed-phase orographic clouds using the WRF model with a detailed bin microphysics scheme. J. Geophys. Res. Atmos., 120, 8345–8358,  https://doi.org/10.1002/2014JD022988.CrossRefGoogle Scholar
  38. Xie, X., X. Liu, Y. Peng, Y. Wang, Z. Yue, and X. Li, 2013: Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion. Tellus B: Chemical and Physical Meteorology, 65, 19054,  https://doi.org/10.3402/tellusb.v65i0.19054.CrossRefGoogle Scholar
  39. Xie, X., and X. Liu, 2015: Aerosol-cloud-precipitation interactions in WRF model: Sensitivity to autoconversion parameterization. J. Meteor. Res., 29(1), 72–81,  https://doi.org/10.1007/s13351-014-4065-8.CrossRefGoogle Scholar
  40. Xue, L., A. Teller, R. Rasmussen, I. Geresdi, and Z. Pan, 2010: Effects of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation simulated by a detained bin microphysical scheme. J. Atmos. Sci., 67, 3336–3354,  https://doi.org/10.1175/2010JAS3511.1.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Hui Xiao
    • 1
  • Yan Yin
    • 2
    Email author
  • Pengguo Zhao
    • 3
  • Qilin Wan
    • 1
  • Xiantong Liu
    • 1
  1. 1.Guangzhou Institute of Tropical and Marine MeteorologyChina Meteorological AdministrationGuangzhouChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  3. 3.College of Atmospheric ScienceChengdu University of Information & TechnologyChengduChina

Personalised recommendations