Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 8, pp 771–778 | Cite as

CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation

  • Bian He
  • Qing BaoEmail author
  • Xiaocong Wang
  • Linjiong Zhou
  • Xiaofei Wu
  • Yimin Liu
  • Guoxiong Wu
  • Kangjun Chen
  • Sicheng He
  • Wenting Hu
  • Jiandong Li
  • Jinxiao Li
  • Guokui Nian
  • Lei Wang
  • Jing Yang
  • Minghua Zhang
  • Xiaoqi Zhang
Open Access
Data Description Article

Abstract

The outputs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic, Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project (CMIP6) are described in this paper. The CAS FGOALS-f3-L model, experiment settings, and outputs are all given. In total, there are three ensemble experiments over the period 1979–2014, which are performed with different initial states. The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets. The baseline performances of the model are validated at different time scales. The preliminary evaluation suggests that the CAS FGOALS-f3-L model can capture the basic patterns of atmospheric circulation and precipitation well, including the propagation of the Madden-Julian Oscillation, activities of tropical cyclones, and the characterization of extreme precipitation. These datasets contribute to the benchmark of current model behaviors for the desired continuity of CMIP.

Key words

CMIP6 AMIP FGOALS-f3-L MJO tropical cyclone extreme precipitation 

摘 要

本文介绍了中国科学院大气物理研究所开发的CAS FGOALS-f3-L 气候系统模式参加第六次国际耦合模式比较计划 (CMIP6)的DECK试验(Diagnostic, Evaluation and Characterization of Klima common experiments)中全球大气环流模式(AMIP)模拟数据, 其中包括CAS FGOALS-f3-L模式的动力框架, 物理过程简介以及模式试验设计, 数据信息以及初步评估结果. 模式采用时间滞后法产生不同初始场的三个集合成员, 并提供1979–2014年的模拟结果. 模式输出包括37个变量, 涉及3小时平均, 6小时瞬时, 日平均和月平均数据. 本文还评估了模式在不同时间尺度上的基本模拟性能. 结果表明CAS FGOALS-f3-L模式能够很好的模拟出大尺度全球大气环流和降水的基本特征, 能够很好的模拟出降水和850hPa风的MJO传播特征, 以及台风的活动和极端降水的发生频次特征. 该数据集贡献于CMIP计划在模式发展评估上的连续性.

关键词

CMIP6 AMIP FGOALS-f3-L MJO 台风 极端降水 

Notes

Acknowledgements

The research presented in this paper was jointly funded by the National Key Research and development Program of China (Grant No. 2017YFA0604004), the National Natural Science Foundation of China (Grant Nos. 91737306, U1811464, 41530426, 91837101, 41730963, and 91637312).

References

  1. Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918–932,  https://doi.org/10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.CrossRefGoogle Scholar
  2. Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4, 1147–1167,  https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.CrossRefGoogle Scholar
  3. Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27(5), 1131–1142, https://doi.org/10.1007/s00376-010-9177-1.CrossRefGoogle Scholar
  4. Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30(3), 561–576, https://doi.org/10.1007/s00376-012-2113-9.CrossRefGoogle Scholar
  5. Bao, Q., X. F. Wu, J. X. Li, L. Wang, B. He, X. C. Wang, Y. M. Liu, and G. X. Wu, 2019: Outlook for El Nino and the Indian Ocean Dipole in autumn-winter 2018–2019. Chinese Science Bulletin, 64, 73–78,  https://doi.org/10.1360/N972018-00913. (in Chinese)CrossRefGoogle Scholar
  6. Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22(12), 3422–3448, https://doi.org/10.1175/2008jcli2556.1.CrossRefGoogle Scholar
  7. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spec-troscopy and Radiative Transfer, 91(2), 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058.CrossRefGoogle Scholar
  8. Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597,  https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  9. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719,  https://doi.org/10.1002/qj.49712253107.CrossRefGoogle Scholar
  10. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958,  https://doi.org/10.5194/gmd-9-1937-2016.CrossRefGoogle Scholar
  11. Gates, W. L., 1992: AMIP: The atmospheric model intercompari-son project. Bull. Amer. Meteor. Soc., 73, 1962–1970,  https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.CrossRefGoogle Scholar
  12. Gates, W. L., and Coauthors, 1999: An overview of the results of the atmospheric model intercomparison project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29–56. https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.Google Scholar
  13. Harris, L. M., and S.-J. Lin, 2014: Global-to-regional nested grid climate simulations in the GFDL high resolution atmospheric model. J. Climate, 27(13), 4890–4910, https://doi.org/10.1175/JCLI-D-13-00596.1.CrossRefGoogle Scholar
  14. He, S. C., J. Yang, Q. Bao, L. Wang, and B. Wang, 2019: Fidelity of the observational/reanalysis datasets and global climate models in representation of extreme precipitation in East China. J. Climate, 32(1), 195–212, https://doi.org/10.1175/JCLI-D-18-0104.1.CrossRefGoogle Scholar
  15. Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842,  https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.CrossRefGoogle Scholar
  16. Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology, 2, 36–50,  https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.CrossRefGoogle Scholar
  17. Huffman, G. J., and Coauthors, 2007: The TRMM multisatel-lite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55,  https://doi.org/10.1175/JHM560.1.CrossRefGoogle Scholar
  18. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea ice model documentation and software user's manual version 4.1. Tech. Rep. LA-CC-06-012, 675 pp.Google Scholar
  19. Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic change, 109(1–2), 117, https://doi.org/10.1007/s10584-011-0153-2.CrossRefGoogle Scholar
  20. Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res., 120, 4718–4748,  https://doi.org/10.1002/2014JD022375.Google Scholar
  21. Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91(3), 363–376, https://doi.org/10.1175/2009BAMS2755.1.CrossRefGoogle Scholar
  22. Lamarque, J.-F., and Coauthors, 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the community earth system model. Geoscientific Model Development, 5(2), 369–411, https://doi.org/10.5194/gmd-5-369-2012.CrossRefGoogle Scholar
  23. Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2018MS001506.Google Scholar
  24. Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132(10), 2293–2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.CrossRefGoogle Scholar
  25. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22(6), 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.CrossRefGoogle Scholar
  26. Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26(3), 318–329, https://doi.org/10.1007/s13351-012-0305-y.CrossRefGoogle Scholar
  27. Matthes, K., and Coauthors, 2017: Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10(6), 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017.CrossRefGoogle Scholar
  28. Meinshausen, M., and Coauthors, 2017: Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 10, 2057–2116,  https://doi.org/10.5194/gmd-10-2057-2017.CrossRefGoogle Scholar
  29. Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Technical Memo. 206, 41 pp.Google Scholar
  30. Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the community land model (CLM). NCAR/TN-478 + STR, 173 pp, https://doi.org/10.5065/D6FB50WZ.Google Scholar
  31. Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an oro-graphic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112(474), 1001–1039, https://doi.org/10.1002/qj.49711247406.CrossRefGoogle Scholar
  32. Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227(1), 55–78, https://doi.org/10.1016/j.jcp.2007.07.022.CrossRefGoogle Scholar
  33. Simpson, R. H., and H. Saffir, 1974: The hurricane disaster— potential scale. Weatherwise, 27(4), 169–186, https://doi.org/10.1080/00431672.1974.9931702.CrossRefGoogle Scholar
  34. Sun, Z. A., and L. Rikus, 1999: Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J. Geophys. Res., 104, 6291–6303,  https://doi.org/10.1029/1998JD200095.CrossRefGoogle Scholar
  35. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800,  https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.CrossRefGoogle Scholar
  36. Waliser, D., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 3006–3030,  https://doi.org/10.1175/2008JCLI2731.1.CrossRefGoogle Scholar
  37. Wang, X. C., and M. H. Zhang, 2014: Vertical velocity in shallow convection for different plume types. Journal of Advances in Modeling Earth Systems, 6(2), 478–489, https://doi.org/10.1002/2014MS000318.CrossRefGoogle Scholar
  38. Wu, G. X., H. Liu, Y. C. Zhao, and W. P. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13(1), 1–18, https://doi.org/10.1007/bf02657024.CrossRefGoogle Scholar
  39. Xiang, B. Q., and Coauthors, 2015: Beyond weather time-scale prediction for hurricane sandy and super typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143(2), 524–535, https://doi.org/10.1175/MWR-D-14-00227.1.CrossRefGoogle Scholar
  40. Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21), 3084–3102, https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.CrossRefGoogle Scholar
  41. Yang, J., Q. Bao, X. C. Wang, and T. J. Zhou, 2012: The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models. Adv. Atmos. Sci., 29(3), 529–543, https://doi.org/10.1007/s00376-011-1087-3.CrossRefGoogle Scholar
  42. Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7(1), 1–20, https://doi.org/10.1002/2014ms000349.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Bian He
    • 1
    • 2
    • 3
  • Qing Bao
    • 1
    • 2
    Email author
  • Xiaocong Wang
    • 1
    • 2
  • Linjiong Zhou
    • 4
  • Xiaofei Wu
    • 5
  • Yimin Liu
    • 1
    • 2
    • 3
  • Guoxiong Wu
    • 1
    • 2
    • 3
  • Kangjun Chen
    • 1
  • Sicheng He
    • 6
  • Wenting Hu
    • 1
    • 3
  • Jiandong Li
    • 1
    • 3
  • Jinxiao Li
    • 1
    • 3
  • Guokui Nian
    • 1
    • 3
  • Lei Wang
    • 1
    • 3
  • Jing Yang
    • 6
  • Minghua Zhang
    • 1
  • Xiaoqi Zhang
    • 7
    • 1
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid DynamicsInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  2. 2.Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Geophysical Fluid Dynamics LaboratoryPrincetonUSA
  5. 5.School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan ProvinceChengdu University of Information TechnologyChengduChina
  6. 6.State Key Laboratory of Earth Surface Processes and Resource Ecology/Academy of Disaster Reduction and Emergency Management Ministry of Civil Affairs and Ministry of Education, Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
  7. 7.School of Atmospheric SciencesNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations