Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 12, pp 1327–1339 | Cite as

Analysis of Determinants for an Enhanced and Long-lasting Coastal Convective System by Means of a Case Study (26 July 2011)

  • Jung-Tae Lee
  • Dong-In LeeEmail author
  • Shingo Shimizu
  • Cheol-Hwan You
Original Paper

Abstract

A precipitation system developed continuously along the western coastline of the Korean Peninsula and created considerable precipitation both along the coast and inland on 26 July 2011. In this study, the causes for this nearshore convective system are investigated from observations and the results of model experiments. Three-dimensional radar fields clearly show that a change of wind at the surface border played an important role in the development of the nearshore convection system. The simulation results, which are very similar to the observations, show that the surface border generated and maintained the convergence zone. The roughness change enhanced the convergence, and the interaction between the deepening cold pool and downward flow maintained the convergence zone. The surface mechanical discontinuity affected by the roughness change between sea and land formed the convergence (gradient of wind stress), which induced momentum transfer to the upper layer. The cold pool created a steep gradient of potential temperature and provided the reason for the propagated convergence zone with the downward flow. The maximum value of the surface change factor, which comprises the influencing factors for the long-lasting convective system, reflects the enhancement of the system at the coast.

Key words

coastal precipitation roughness convergence zone cold pool propagation downward flow 

摘 要

2011 年 7 月 26 日, 一次降水系统沿着朝鲜半岛西部海岸线持续发展, 并在沿海和内陆地区造成强降水. 本研究中, 通过观测和数值试验结果探讨了这种近岸对流系统的成因. 三维雷达风场清晰地表明, 在近岸对流系统的发展过程中, 海陆边界近地面风场的变化起了重要作用. 模拟结果与观测结果非常相似, 表明海陆边界产生并维持了辐合区. 粗糙度的变化增强了辐合, 并且加深的冷池与下沉气流的相互作用有利于辐合区的维持. 受海陆粗糙度变化影响的表面机械不连续性形成了辐合 (风应力梯度), 引起动量传递到上层. 冷池产生了明显的位温梯度, 并解释了辐合区和下沉气流的传播. 表面变化因子的极大值, 包括持续性对流系统的影响因子, 反映了对流系统在海岸处的增强。

关键词

沿海降水 粗糙度 辐合区 冷池传播 下沉气流 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was funded by the Korea Meteorological Institute (Grant No. KMI 2018-05410).

References

  1. Attema, J. J., and G. Lenderink, 2014: The influence of the North Sea on coastal precipitation in the Netherlands in the present-day and future climate. Climate Dyn., 42(1–2), 505–519,  https://doi.org/10.1007/s00382-013-1665-4.CrossRefGoogle Scholar
  2. Baidya Roy, S., and R. Avissar, 2002: Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res., 107(D20), 8037,  https://doi.org/10.1029/2000JD000266.CrossRefGoogle Scholar
  3. Bergeron, T., 1949: The problem of artificial control of rainfall on the globe II. The coastal orographic maxima of precipitation in autumn and winter. Tellus, 1(3), 15–32,  https://doi.org/10.1111/j.2153-3490.1949.tb01264.x.CrossRefGoogle Scholar
  4. Braun, S. A., R. Rotunno, and J. B. Klemp, 1999: Effects of coastal orography on landfalling cold fronts. Part I: Dry, inviscid dynamics. J. Atmos. Sci., 56(4), 517–533,  https://doi.org/10.1175/1520-0469(1999)056<0517:EOCOOL>2.0.CO;2. CrossRefGoogle Scholar
  5. Camberlin, P., and O. Planchon, 1997: Coastal precipitation regimes in Kenya. Geografiska Annaler: Series A, Physical Geography, 79(1–2), 109–119,  https://doi.org/10.1111/j.0435-3676.1997.00010.x.CrossRefGoogle Scholar
  6. Chen, G. X., X. Y. Zhu, W. M. Sha, T. Iwasaki, H. Seko, K. Saito, H. Iwai, and S. Ishii, 2015: Toward improved forecasts of sea-breeze horizontal convective rolls at super high resolutions. Part I: Configuration and verification of a Down-Scaling Simulation System (DS3). Mon. Wea. Rev., 143(5), 1849–1872,  https://doi.org/10.1175/MWR-D-14-00212.1.CrossRefGoogle Scholar
  7. Christakos, K., G. Varlas, J. Reuder, P. Katsafados, and A. Papadopoulos, 2014: Analysis of a low-level coastal jet off the western coast of Norway. Energy Procedia, 33, 162–172,  https://doi.org/10.1016/j.egypro.2014.07.225.CrossRefGoogle Scholar
  8. Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87(10), 367–374,  https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.CrossRefGoogle Scholar
  9. de Szoeke, S. P., E. D. Skyllingstad, P. Zuidema, and A. S. Chandra, 2017: Cold pools and their influence on the tropical marine boundary layer. J. Atmos. Sci., 74(4), 1149–1168,  https://doi.org/10.1175/JAS-D-16-0264.1.CrossRefGoogle Scholar
  10. Drobinski, P., S. Bastin, T. Arsouze, K. Béranger, E. Flaounas, and M. Stéfanon, 2018: North-western Mediterranean seabreeze circulation in a regional climate system model. Climate Dyn., 51, 1077–1093,  https://doi.org/10.1007/s00382-017-3595-z.CrossRefGoogle Scholar
  11. Gentine, P., A. Garelli, S. B. Park, J. Nie, G. Torri, and Z. M. Kuang, 2016: Role of surface heat fluxes underneath cold pools. Geophys. Res. Lett., 43(2), 874–883,  https://doi.org/10.1002/2015GL067262.CrossRefGoogle Scholar
  12. Gray, W. M., J. D. Sheaffer, C. W. Landsea, 1997: Climate trends associated with multidecadal variability of Atlantic hurricane activity. Hurricanes, 15–53,  https://doi.org/10.1007/978-3-642-60672-4_2.CrossRefGoogle Scholar
  13. Gyakum, J. R., and R. E. Danielson, 2000: Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the western North Pacific. Mon. Wea. Rev., 128(3), 851–863,  https://doi.org/10.1175/1520-0493(2000)128<0851:AOMPTO>2.0.CO;2.CrossRefGoogle Scholar
  14. Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2015: Influential role of moisture supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone. Mon. Wea. Rev., 143(10), 4126–4144,  https://doi.org/10.1175/MWR-D-15-0016.1.CrossRefGoogle Scholar
  15. Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. Tech. Rep. MRI 28.Google Scholar
  16. Jang, J., and S.-Y. Hong, 2014: Quantitative forecast experiment of a heavy rainfall event over Korea in a global model: Horizontal resolution versus lead time issues. Meteor. Atmos. Phys., 124(3–4), 113–127,  https://doi.org/10.1007/s00703-014-0312-x.CrossRefGoogle Scholar
  17. Jang, M., C. H. You, J. B. Jee, S. H. Park, S. I. Kim, and Y. J. Choi, 2016: Three-dimensional analysis of heavy rainfall using KLAPS re-analysis data. Atmosphere, 26(1), 97–109,  https://doi.org/10.14191/Atmos.2016.26.1.097.CrossRefGoogle Scholar
  18. Jeong, J. H., D. I. Lee, and C. C. Wang, 2016: Impact of the cold pool on mesoscale convective system-produced extreme rainfall over southeastern South Korea: 7 July 2009. Mon. Wea. Rev., 144(10), 3985–4006,  https://doi.org/10.1175/MWR-D-16-0131.1.CrossRefGoogle Scholar
  19. Ke, C.-Y., K.-S. Chung, T.-C. Chen Wang, and Y.-C. Liou, 2019: Analysis of heavy rainfall and barrier-jet evolution during Mei-Yu season using multiple Doppler radar retrievals: A case study on 11 June 2012. Tellus A: Dynamic Meteorology and Oceanography, 71(1), 1–21,  https://doi.org/10.1080/16000870.2019.1571369.CrossRefGoogle Scholar
  20. Langland, R. H., R. L. Elsberry, and R. M. Errico, 1995: Evaluation of physical processes in an idealized extratropical cyclone using adjoint sensitivity. Quart. J. Roy. Meteor. Soc., 121(526), 1349–1386,  https://doi.org/10.1002/qj.49712152608.CrossRefGoogle Scholar
  21. Lee, D. K., H. R. Kim, and S. Y. Hong, 1998: Heavy rainfall over Korea during 1980–1990. Korean Journal of the Atmospheric Sciences, 1(1), 523–547.Google Scholar
  22. Lee, J. H., 2015: Turbulent boundary layer flow with a step change from smooth to rough surface. International Journal of Heat and Fluid Flow, 54, 39–54,  https://doi.org/10.1016/j.ijheatfluidflow.2015.05.001.CrossRefGoogle Scholar
  23. Lee, J. T., D. I. Lee, C.-H. You, H. Uyeda, Y.-C. Liou, and I.-S. Han, 2014: Dual-Doppler radar analysis of a near-shore line-shaped convective system on 27 July 2011, Korea: A case study. Tellus A: Dynamic Meteorology and Oceanography, 66(1), 23453,  https://doi.org/10.3402/tellusa.v66.23453.CrossRefGoogle Scholar
  24. Lee, J.-Y., W. Kim, and T.-Y. Lee, 2017: Physical and dynamic factors that drove the heavy rainfall event over the middle Korean Peninsula on 26–27 July 2011. Asia-Pacific Journal of Atmospheric Sciences, 53(1), 101–120,  https://doi.org/10.1007/s13143-017-0009-4.CrossRefGoogle Scholar
  25. Li, Y. P., and R. E. Carbone, 2015: Offshore propagation of coastal precipitation. J. Atmos. Sci., 72(12), 4553–4568,  https://doi.org/10.1175/JAS-D-15-0104.1.CrossRefGoogle Scholar
  26. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22(6), 1065–1092,  https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.CrossRefGoogle Scholar
  27. Liou, Y.-C., and Y.-J. Chang, 2009: A variational multiple-Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137(11), 3992–4010,  https://doi.org/10.1175/2009MWR2980.1.CrossRefGoogle Scholar
  28. Liou, Y.-C., S.-F. Chang, and J. Z. Sun, 2012: An application of the immersed boundary method for recovering the three-dimensional wind fields over complex terrain using multiple-Doppler radar data. Mon. Wea. Rev., 140(5), 1603–1619,  https://doi.org/10.1175/MWR-D-11-00151.1.CrossRefGoogle Scholar
  29. Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL-parameterization at ECMWF. Proc. Workshop on Planetary Boundary Layer Parameterization, Berkshire, UK, European Centre for Medium Range Weather Forecasts.Google Scholar
  30. Mazón, J., and D. Pino, 2013: The role of sea-land air thermal difference, shape of the coastline and sea surface temperature in the nocturnal offshore convection. Tellus A: Dynamic Meteorology and Oceanography, 65(1), 20027,  https://doi.org/10.3402/tellusa.v6510.20027.CrossRefGoogle Scholar
  31. Murakami, M., T. L. Clark, and W. D. Hall, 1994: Numerical simulations of convective snow clouds over the sea of Japan. J. Meteor. Soc. Japan, 72(1), 43–62,  https://doi.org/10.2151/jmsj1965.72.1_43.CrossRefGoogle Scholar
  32. Nyberg, A., and H. Modén, 1966: The seasonal distribution of precipitation in the area east of Stockholm and the daily distribution in a few selected cases. Tellus, 18(4), 745–750,  https://doi.org/10.1111/j.2153-3490.1966.tb00295.x.CrossRefGoogle Scholar
  33. Oerlemans, J., 1980: A case study of a subsynoptic disturbance in a polar outbreak. Quart. J. Roy. Meteor. Soc., 106(448), 313–325,  https://doi.org/10.1002/qj.49710644806.CrossRefGoogle Scholar
  34. Persson, P. O. G., P. J. Neiman, B. Walter, J.-W. Bao, and F. M. Ralph, 2005: Contributions from California coastal-zone surface fluxes to heavy coastal precipitation: A CALJET case study during the strong El Niño of 1998. Mon. Wea. Rev., 133(5), 1175–1198,  https://doi.org/10.1175/MWR2910.1.CrossRefGoogle Scholar
  35. Pielke Sr, R. A., J. Adegoke, A. BeltraáN-Przekurat, C. A. Hiemstra, J. Lin, U. S. Nair, D. Niyogi, and T. E. Nobis, 2007: An overview of regional land-use and land-cover impacts on rainfall. Tellus B: Chemical and Physical Meteorology, 59(3), 587–601,  https://doi.org/10.1111/j.1600-0889.2007.00251.x.CrossRefGoogle Scholar
  36. Pires, L. B. M., G. Fisch, R. Gielow, L. F. Souza, A. C. Avelar, I. B. de Paula, and R. da Mota Girardi, 2015: A study of the internal boundary layer generated at the Alcantara Space Center. American Journal of Environmental Engineering, 5(1A), 52–64,  https://doi.org/10.5923/s.ajee.201501.08.Google Scholar
  37. Plant, R. S., and B. W. Atkinson, 2002: Sea-breeze modification of the growth of a marine internal boundary layer. Bound.-Layer Meteor., 104(2), 201–228,  https://doi.org/10.1023/A:1016045229957.CrossRefGoogle Scholar
  38. Prandtl, L., 1925: Bericht uber Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift Für angewandte Mathematik und Mechanik, 5(1), 136–139.CrossRefGoogle Scholar
  39. Ross, A. N., A. M. Tompkins, and D. J. Parker, 2004: Simple models of the role of surface fluxes in convective cold pool evolution. J. Atmos. Sci., 61(13), 1582–1595,  https://doi.org/10.1175/1520-0469(2004)061<1582:SMOTRO>2.0.CO;2.CrossRefGoogle Scholar
  40. Roxy, M. K., K. Ritika, P. Terray, R. Murtugudde, K. Ashok, and B. N. Goswami, 2015: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nature Communications, 6, 7423,  https://doi.org/10.1038/ncomms8423.CrossRefGoogle Scholar
  41. Schlemmer, L., and C. Hohenegger, 2016: Modifications of the atmospheric moisture field as a result of cold-pool dynamics. Quart. J. Roy. Meteor. Soc., 142(694), 30–42,  https://doi.org/10.1002/qj.2625.CrossRefGoogle Scholar
  42. Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136(10), 3964–3986,  https://doi.org/10.1175/2008MWR2471.1.CrossRefGoogle Scholar
  43. Segami, A., K. Kurihara, H. Nakamura, M. Ueno, and I. Takano, 1989: Description of Japan spectral model. JMA/NPD Tech. Rep. 25, 41 pp.Google Scholar
  44. Smith, W. H. F., and P. Wessel, 1990: Gridding with continuous curvature splines in tension. Geophysics, 55(3), 293–305,  https://doi.org/10.1190/1.1442837.CrossRefGoogle Scholar
  45. Sridhar, V., 2013: Tracking the influence of irrigation on land surface fluxes and boundary layer climatology. J. Contemp. Water Res. Educ., 152(1), 79–93,  https://doi.org/10.1111/j.1936-704X.2013.03170.X.CrossRefGoogle Scholar
  46. Sun, J. H., and T.-Y. Lee, 2002: A numerical study of an intense quasi-stationary convection band over the Korean Peninsula. J. Meteor. Soc. Japan, 80(5), 1221–1245,  https://doi.org/10.2151/jmsj.80.1221.CrossRefGoogle Scholar
  47. Tseng, Y.-H., and J. H. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192(2), 593–623,  https://doi.org/10.1016/j.jcp.2003.07.024.CrossRefGoogle Scholar
  48. Tsuboki, K., A. Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. Int. Symp. High Perform. Comp., 243–259,  https://doi.org/10.1007/3-540-47847-7_21.Google Scholar
  49. Woodruff, J. D., J. L. Irish, S. J. Camargo, 2013: Coastal flooding by tropical cyclones and sea-level rise. Nature, 504(7478), 44–52,  https://doi.org/10.1038/nature12855.CrossRefGoogle Scholar
  50. Wu, J., 1969: Wind stress and surface roughness at air-sea interface. J. Geophys. Res., 74(2), 444–455,  https://doi.org/10.1029/JB074i002p00444.CrossRefGoogle Scholar
  51. Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87(C12), 9704–9706,  https://doi.org/10.1029/JC087iC12p09704.CrossRefGoogle Scholar
  52. Yang, L. B., G. Q. Sun, L. Zhi, and J. J. Zhao, 2018: Negative soil moisture-precipitation feedback in dry and wet regions. Scientific Reports, 8(1), 4026,  https://doi.org/10.1038/s41598-018-22394-7.CrossRefGoogle Scholar
  53. Zhang, J., S. Wang, and B. Clarke, 2004: WSR-88D reflectivity quality control using horizontal and vertical reflectivity structure. Preprints, 11th Conf. on Aviation, Range and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., 5 pp.Google Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jung-Tae Lee
    • 1
    • 2
  • Dong-In Lee
    • 2
    Email author
  • Shingo Shimizu
    • 3
  • Cheol-Hwan You
    • 2
  1. 1.New and Renewable Energy Resource CenterKorea Institute of Energy ResearchDaejeonRepublic of Korea
  2. 2.Department of Environmental Atmospheric SciencePukyong National UniversityBusanRepublic of Korea
  3. 3.Storm, Flood, and Landslide Research DepartmentNational Research Institute for Earth Science and Disaster ResilienceTsukubaJapan

Personalised recommendations