Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 10, pp 1129–1142 | Cite as

A 3D Nonhydrostatic Compressible Atmospheric Dynamic Core by Multi-moment Constrained Finite Volume Method

  • Qingchang Qin
  • Xueshun Shen
  • Chungang Chen
  • Feng Xiao
  • Yongjiu Dai
  • Xingliang LiEmail author
Original Paper
  • 29 Downloads

Abstract

A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrain-following grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the time evolution formulations derived from the governing equations. Rigorous numerical conservation is ensured by a constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper is based on a three-point MCV method and has some advantages in comparison with other existing methods, such as uniform third-order accuracy, a compact stencil, and algorithmic simplicity. To check the performance of the 3D nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present dynamic core is very competitive when compared to other existing advanced models, and thus lays the foundation for further developing global atmospheric models in the near future.

Key words

multi-moment constrained finite-volume method nonhydrostatic dynamic core topography height-based terrain-following coordinate 

摘要

在原来二维非静力大气模式框架基础上, 本文采用3点多矩约束有限体积格式发展了一个含地形的三维完全可压缩非静力有限体积大气模式动力框架. 多矩约束有限体积方法定义了两类矩: (1)点值(PV矩), (2)体积积分平均值(VIA矩). 通过大气控制方程, 单元网格内未知变量(即PV矩)的时间演变得以更新; 而积分平均值(VIA矩)通过有限体积通量形式方法更新其时间演变, 进而保证了数值的严格守恒. 与现有的其他方法相比, 本文发展的三维大气模式框架所采用的3点多矩约束有限体积算法, 具有一致的3阶精度, 模板紧致和算法简洁等优势. 为了检验发展的三维大气模式框架性能, 本文进行了各种标准数值测试包括陡峭地形数值测试, 数值模拟结果表明新发展的三维大气模式框架可与现有的先进大气模式相媲美. 本研究为进一步发展全球多矩约束有限体积模式奠定基础.

关键词

多矩约束有限体积法 非静力 模式动力框架 地形 高度地形追随坐标 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC1501901 and 2017YFA0603901) and the Beijing Natural Science Foundation (Grant No. JQ18001).

References

  1. Akoh, R., S. Li, and F. Xiao, 2010: A multi-moment finite volume formulation for shallow water equations on unstructured mesh. J. Comput. Phys., 229, 4567–4590,  https://doi.org/10.1016/j.jcp.2010.02.023.CrossRefGoogle Scholar
  2. Benoit, R., M. Desgagné, P. Pellerin, S. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev., 125, 2382–2415,  https://doi.org/10.1175/1520-0493(1997)125<2382:TCMASL>2.0.CO;2.CrossRefGoogle Scholar
  3. Blaise, S., and A. St-Cyr, 2012: A dynamic hp-adaptive discontinuous Galerkin method for shallow-water flows on the sphere with application to a global tsunami simulation. Mon. Wea. Rev., 140, 978–996,  https://doi.org/10.1175/MWR-D-11-00038.1.CrossRefGoogle Scholar
  4. Blaise, S., J. Lambrechts, and E. Deleersnijder, 2016: A stabilization for three-dimensional discontinuous Galerkin discretizations applied to nonhydrostatic atmospheric simulations. International Journal for Numerical Methods in Fluids, 81, 558–585,  https://doi.org/10.1002/fld.4197.CrossRefGoogle Scholar
  5. Chen, C. G., and F. Xiao, 2008: Shallow water model on cubed-sphere by multi-moment finite volume method. J. Comput. Phys., 227, 5019–5044,  https://doi.org/10.1016/-j.jcp.2008.01.033.CrossRefGoogle Scholar
  6. Chen, C. G., J. Z. Bin, and F. Xiao, 2012: A global multimoment constrained finite-volume scheme for advection transport on the hexagonal geodesic grid. Mon. Wea. Rev., 140, 941–955,  https://doi.org/10.1175/MWR-D-11-00095.1.CrossRefGoogle Scholar
  7. Chen, C. G., J. Z. Bin, F. Xiao, X. L. Li and X. S. Shen, 2014a: A global shallow-water model on an icosahedral-hexagonal grid by a multi-moment constrained finite-volume scheme. Quart. J. Roy. Meteor. Soc., 140, 639–650,  https://doi.org/10.1002/qj.2157.CrossRefGoogle Scholar
  8. Chen, C. G., X. L. Li, X. S. Shen and F. Xiao, 2014b: Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids. J. Comput. Phys., 271, 191–223,  https://doi.org/10.1016/j.jcp.2013.10.026.CrossRefGoogle Scholar
  9. Chen, D. H., and Coauthors, 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Science Bulletin, 53, 3433–3445,  https://doi.org/10.1007/s11434-008-0494-z.Google Scholar
  10. Chen, X., N. Andronova, B. Van Leer, J. E. Penner, J. P. Boyd, C. Jablonowski, and S. J. Lin, 2013: A control-volume model of the compressible Euler equations with a vertical Lagrangian coordinate. Mon. Wea. Rev., 141, 2526–2544,  https://doi.org/10.1175/MWR-D-12-00129.1.CrossRefGoogle Scholar
  11. Clark, T. L., 1977: A small-scale dynamic model using a terrain-following coordinate transformation. J. Comput. Phys., 24, 186–215,  https://doi.org/10.1016/0021-9991(77)90057-2.CrossRefGoogle Scholar
  12. Cockburn, B., and C. W. Shu, 1998: The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys., 141, 199–224,  https://doi.org/10.1006/jcph.1998.5892.CrossRefGoogle Scholar
  13. Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the community atmosphere model. The International Journal of High Performance Computing Applications, 26, 74–89,  https://doi.org/10.1177/1094342011428142.CrossRefGoogle Scholar
  14. Doms, G., and U. Schättler, 1999: The nonhydrostatic limited-area model LM (Lokal-Modell) of DWD. Part I: Scientific documentation. Deutscher Wetterdienst LM F90 1.35. 172 pp. [Available from Deutscher Wetterdienst, P. O. Box 100465, 63004 Offenbach, Germany.]Google Scholar
  15. Fournier, A., M. A. Taylor, and J. J. Tribbia, 2004: The spectral element atmosphere model (SEAM): High-resolution parallel computation and localized resolution of regional dynamics. Mon. Wea. Rev., 132, 726–748,  https://doi.org/10.1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2.CrossRefGoogle Scholar
  16. Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17, 209–228,  https://doi.org/10.1016/0021-9991(75)90037-6.CrossRefGoogle Scholar
  17. Giraldo, F., 2011: The nonhydrostatic unified model of the atmosphere (NUMA): CG dynamical core. [Available online from http://hdl.handle.net/10945/38327.]
  18. Giraldo, F. X., and T. E. Rosmond, 2004: A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests. Mon. Wea. Rev., 132, 133–153,  https://doi.org/10.1175/1520-0493(2004)132<0133:AS-SEEA>2.0.CO;2.CrossRefGoogle Scholar
  19. Giraldo, F. X., and M. Restelli, 2008: A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases. J. Comput. Phys., 227, 3849–3877,  https://doi.org/10.1016/j.jcp.2007.12.009.CrossRefGoogle Scholar
  20. Hesthaven, J. S., and T. Warburton, 2008: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, 500 pp.CrossRefGoogle Scholar
  21. Hodur, R. M., 1997: The naval research laboratory’s coupled ocean/atmosphere mesoscale prediction system (COAMPS). Mon. Wea. Rev., 125, 1414–1430,  https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.CrossRefGoogle Scholar
  22. Ii, S., and F. Xiao, 2009: High order multi-moment constrained finite volume method. Part I: Basic formulation. J. Comput. Phys., 228, 3668–3707,  https://doi.org/10.1016/j.jcp.2009.02.009.Google Scholar
  23. Ii, S., and F. Xiao, 2010: A global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid. J. Comput. Phys., 229, 1774–1796,  https://doi.org/10.1016/j.jcp.2009.11.008.CrossRefGoogle Scholar
  24. Ii, S., M. Shimuta, and F. Xiao, 2005: A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments. Computer Physics Communications, 173, 17–33,  https://doi.org/10.1016/j.cpc.2005.07.003.CrossRefGoogle Scholar
  25. Iskandarani, M., D. B. Haidvogel, J. C. Levin, E. Curchitser, and C. A. Edwards, 2002: Multi-scale geophysical modeling using the spectral element method. Computing in Science & Engineering, 4, 42–48,  https://doi.org/10.1109/MCISE.2002.1032428.CrossRefGoogle Scholar
  26. Karniadakis, G. E., and S. J. Sherwin, 2005: Spectral/HP Element Methods for Computational Fluid Dynamics. 2nd ed., Oxford University Press, 657 pp.CrossRefGoogle Scholar
  27. Levy, M. N., R. D. Nair, and H. M. Tufo, 2007: High-order Galerkin methods for scalable global atmospheric models. Computers & Geosciences, 33, 1022–1035,  https://doi.org/10.1016/j.cageo.2006.12.004.CrossRefGoogle Scholar
  28. Li, X. L., C. G. Chen, X. S. Shen and F. Xiao, 2013b: A multimoment constrained finite-volume model for nonhydrostatic atmospheric dynamics. Mon. Wea. Rev., 141, 1216–1240,  https://doi.org/10.1175/MWR-D-12-00144.1.CrossRefGoogle Scholar
  29. Li, X. L., D. H. Chen, X. D. Peng, K. Takahashi, and F. Xiao, 2008: A multimoment finite-volume shallow-water model on the Yin-Yang overset spherical grid. Mon. Wea. Rev., 136, 3066–3086,  https://doi.org/10.1175/2007MWR2206.1.CrossRefGoogle Scholar
  30. Li, X. L., X. S. Shen, X. D. Peng, F. Xiao, Z. R. Zhuang, and C. G. Chen, 2012: Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme. Procedia Computer Science, 9, 1004–1013,  https://doi.org/10.1016/j.procs.2012.04.108.CrossRefGoogle Scholar
  31. Li, X. L., X. S. Shen, X. D. Peng, F. Xiao, Z. R. Zhuang and C. G. Chen, 2013a: An accurate multimoment constrained finite volume transport model on Yin-Yang grids. Adv. Atmos. Sci., 30, 1320–1330,  https://doi.org/10.1007/s00376-013-2217-x.CrossRefGoogle Scholar
  32. Li, X. L., X. S. Shen, F. Xiao, and C. G. Chen, 2016: An MCV non-hydrostatic atmospheric model with height-based terrain following coordinate: Tests of waves over steep mountains. Advances in Meteorology, 4513823,  https://doi.org/10.1155/2016/4513823.Google Scholar
  33. Marras, S., M. Moragues, M. Vazquez, O. Jorba, and G. Houzeaux, 2013: A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows. J. Comput. Phys., 236, 380–407,  https://doi.org/10.1016/j.jcp.2012.10.056.CrossRefGoogle Scholar
  34. Nair, R. D., H. W. Choi, and H. M. Tufo, 2009: Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core. Computers & Fluids, 38, 309–319,  https://doi.org/10.1016/j.compfluid.2008.04.006.CrossRefGoogle Scholar
  35. Patera, A. T., 1984: A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys., 54, 468–488,  https://doi.org/10.1016/0021-9991(84)90128-1.CrossRefGoogle Scholar
  36. Prusa, J. M., P. K. Smolarkiewicz, and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Computers & Fluids, 37, 1193–1207,  https://doi.org/10.1016/j.compfluid.2007.12.001.CrossRefGoogle Scholar
  37. Restelli, M., and F. X. Giraldo, 2009: A conservative discontinuous Galerkin semi-implicit Formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling. SIAM Journal on Scientific Computing, 31, 2231–2257,  https://doi.org/10.1137/070708470.CrossRefGoogle Scholar
  38. Roe, P. L., 1981: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43, 357–372,  https://doi.org/10.1016/0021-9991(81)90128-5.CrossRefGoogle Scholar
  39. Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 2459–2480,  https://doi.org/10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2.CrossRefGoogle Scholar
  40. Shu, C. W., 1988: Total-variation-diminishing time discretizations. SIAM Journal on Scientific and Statistical Computing, 9, 1073–1084,  https://doi.org/10.1137/0909073.CrossRefGoogle Scholar
  41. Shu, C. W., and S. Osher, 1988: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77, 439–471,  https://doi.org/10.1016/0021-9991(88)90177-5.CrossRefGoogle Scholar
  42. Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465–3485,  https://doi.org/10.1016/j.jcp.2007.01.037.CrossRefGoogle Scholar
  43. Skamarock, W. C, J. B. Klemp, M. G. Duda, L. D. Fowler, S. H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105,  https://doi.org/10.1175/MWR-D-11-00215.1.CrossRefGoogle Scholar
  44. Smith, R. B., 1988: Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci., 45, 3889–3896,  https://doi.org/10.1175/1520-0469(1988)045<3889:LTOSFP>2.0.CO;2.CrossRefGoogle Scholar
  45. Smolarkiewicz, P. K., J. Szmelter, and A. A. Wyszogrodzki, 2013: An unstructured-mesh atmospheric model for nonhydrostatic dynamics. J. Comput. Phys., 254, 184–199,  https://doi.org/10.1016/j.jcp.2013.07.027.CrossRefGoogle Scholar
  46. Szmelter, J., Z. Zhang, and P. K. Smolarkiewicz, 2015: An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution. J. Comput. Phys., 294, 363–381,  https://doi.org/10.1016/j.jcp.2015.03.054.CrossRefGoogle Scholar
  47. Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 5879–5895,  https://doi.org/10.1016/j.jcp.2010.04.008.CrossRefGoogle Scholar
  48. Thomas, S. J., and R. D. Loft, 2000: Parallel semi-implicit spectral element methods for atmospheric general circulation models. Journal of Scientific Computing, 15, 499–518,  https://doi.org/10.1023/A:1011188832645.CrossRefGoogle Scholar
  49. Xiao, F., 2004: Unified formulation for compressible and incompressible flows by using multi-integrated moments I: One-dimensional inviscid compressible flow. J. Comput. Phys., 195, 629–654,  https://doi.org/10.1016/j.jcp.2003.10.014.CrossRefGoogle Scholar
  50. Xiao, F., and S. Ii, 2007: CIP/Multi-moment finite volume method with arbitrary order of accuracy. Proceedings of the Conference on Computational Engineering and Science, 12, 873–876.Google Scholar
  51. Xiao, F., A. Ikebata, and T. Hasegawa, 2005: Numerical simulations of free-interface fluids by a multi-integrated moment method. Comput. Struct., 83, 409–423,  https://doi.org/10.1016/j.compstruc.2004.06.005.CrossRefGoogle Scholar
  52. Xiao, F., R. Akoh, and S. Ii, 2006: Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows. J. Comput. Phys., 213, 31–56,  https://doi.org/10.1016/j.jcp.2005.08.002.CrossRefGoogle Scholar
  53. Xie, B., and F. Xiao, 2016: A multi-moment constrained finite volume method on arbitrary unstructured grids for incompressible flows. J. Comput. Phys., 327, 747–778,  https://doi.org/10.1016/j.jcp.2016.09.054.CrossRefGoogle Scholar
  54. Xue, M., K. K. Droegemeier, and V. Wong, 2000: The advanced regional prediction system (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161–193,  https://doi.org/10.1007/s007030070003.Google Scholar
  55. Yabe, T., and T. Aoki, 1991: A universal solver for hyperbolic equations bycubic-polynomial interpolation I. One-dimensional solver. Computer Physics Communications, 66, 219–232,  https://doi.org/10.1016/0010-4655(91)90071-R.CrossRefGoogle Scholar
  56. Yabe, T., and F. Xiao, and T. Utsumi, 2001: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys., 169, 556–593,  https://doi.org/10.1006/jcph.2000.6625.CrossRefGoogle Scholar
  57. Zhang, M. P., and C. W. Shu, 2005: An analysis of and a comparison between the discontinuous Galerkin and the Spectral finite volume methods. Computers & Fluids, 34, 581–592,  https://doi.org/10.1016/j.compfluid.2003.05.006.CrossRefGoogle Scholar
  58. Zhang, P., C. Yang, C. G. Chen, X. L. Li, X. S. Shen, and F. Xiao, 2017: Development of a hybrid parallel MCV-based high-order global shallow-water model. The Journal of Supercomputing, 73, 2823–2842,  https://doi.org/10.1007/s11227-017-1958-1.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qingchang Qin
    • 1
    • 2
    • 6
  • Xueshun Shen
    • 2
  • Chungang Chen
    • 3
  • Feng Xiao
    • 4
  • Yongjiu Dai
    • 5
  • Xingliang Li
    • 2
    Email author
  1. 1.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  2. 2.Center of Numerical Weather PredicationChina Meteorological AdministrationBeijingChina
  3. 3.State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina
  4. 4.Department of Mechanical EngineeringTokyo Institute of TechnologyTokyoJapan
  5. 5.School of Atmospheric SciencesSun Yat-Sen UniversityGuangzhouChina
  6. 6.Beijing Meteorological ObservatoryBeijingChina

Personalised recommendations