Advertisement

Advances in Atmospheric Sciences

, Volume 37, Issue 2, pp 187–210 | Cite as

Analysis of an Ensemble of High-Resolution WRF Simulations for the Rapid Intensification of Super Typhoon Rammasun (2014)

  • Xun Li
  • Noel E. Davidson
  • Yihong DuanEmail author
  • Kevin J. Tory
  • Zhian Sun
  • Qinbo Cai
Original Paper
  • 10 Downloads
Part of the following topical collections:
  1. Climate and Weather Extremes

Abstract

Diagnostics are presented from an ensemble of high-resolution forecasts that differed markedly in their predictions of the rapid intensification (RI) of Typhoon Rammasun. We show that the basic difference stems from subtle differences in initializations of (a) 500–850-hPa environmental winds, and (b) midlevel moisture and ventilation. We then describe how these differences impact on the evolving convective organization, storm structure, and the timing of RI. As expected, ascent, diabatic heating and the secondary circulation near the inner-core are much stronger in the member that best forecasts the RI. The evolution of vortex cloudiness from this member is similar to the actual imagery, with the development of an inner cloud band wrapping inwards to form the eyewall. We present evidence that this structure, and hence the enhanced diabatic heating, is related to the tilt and associated dynamics of the developing inner-core in shear. For the most accurate ensemble member: (a) inhibition of ascent and a reduction in convection over the up-shear sector allow moistening of the boundary-layer air, which is transported to the down-shear sector to feed a developing convective asymmetry; (b) with minimal ventilation, undiluted clouds and moisture from the down-shear left quadrant are then wrapped inwards to the up-shear left quadrant to form the eyewall cloud; and (c) this process seems related to a critical down-shear tilt of the vortex from midlevels, and the vertical phase-locking of the circulation over up-shear quadrants. For the member that forecasts a much-delayed RI, these processes are inhibited by stronger vertical wind shear, initially resulting in poor vertical coherence of the circulation, lesser moisture and larger ventilation. Our analysis suggests that ensemble prediction is needed to account for the sensitivity of forecasts to a relatively narrow range of environmental wind shear, moisture and vortex inner-structure.

Key words

typhoons rapid intensification ensemble simulation spin-up processes ventilation vertical wind shear 

摘 要

针对超强台风 “威马逊” 的南海迅速加强 (RI) 过程进行了集合数值模拟, 模拟结果具有明显的集合预报离散度. 分析了集合成员的环境风场和中层湿度条件差异对风暴结构、 对流组织和RI发生时点的影响, 结果表明: (1) 风垂直切变数值大小是影响 RI 发生时点的重要因素; (2) 风垂直切变较弱时, 通风干冷下沉气流对边界层影响较小, 边界层湿空气得以输送到下风一侧, 不对称对流发展活跃, 切变下风左侧的对流云团明显地朝着眼心螺旋式发展, 使得上风方向的高层与低层环流垂直耦合, 削弱了涡旋倾斜. 发生 RI 时点较迟的集合成员, 其环境风垂直切变较强, 通风干冷下沉气流较强, 高低层环流垂直耦合度较低. 基于上述分析, 设计了简单的诊断工具--同步指数, 用于判断 RI 是否发生.

关键词

台风 迅速加强 集合模拟 spin-up 过程 通风作用 风垂直切变 

Notes

Acknowledgements

We thank the Bureau of Meteorology (BoM) for providing the OceanMaps 2.0 dataset. The OHC data were derived from this dataset with the help of the first author’s colleagues Wei YANG, Yumei LI and Xiao FENG. We also thank Drs. Charmaine FRANKLIN, Jeffrey KEPERT and Hongyan ZHU of the BoM R&D Branch for their valuable comments. The anonymous reviewers provided very insightful comments, which were challenging, but very much improved the manuscript. The research was partially supported by the National Natural Science Foundation of China (Grant Nos. 41365005, 41765007 and 41705038), the Hainan Key Cooperation Program (Grant No. ZDYF2019213), and the Natural Science Foundation of Hainan Province of China (Grant No. 417298). The manuscript was prepared while the first author was a visiting scientist at the BoM.

References

  1. Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 19–42,  https://doi.org/10.1175/JAS3598.1.CrossRefGoogle Scholar
  2. Callaghan, J., and K. Tory, 2014: On the use of a system-scale ascent/descent diagnostic for short-term forecasting of Tropical Cyclone development, intensification and decay. Tropical Cyclone Research and Review, 3, 78–90,  https://doi.org/10.6057/2014TCRR02.02.Google Scholar
  3. Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531–550,  https://doi.org/10.1175/JAS-D-14-0097.1.CrossRefGoogle Scholar
  4. Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162,  https://doi.org/10.1175/JAS-D-12-062.1.CrossRefGoogle Scholar
  5. Chen, X. M., Y. Q. Wang, and K. Zhao, 2015: Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Mon. Wea. Rev., 143, 64–87,  https://doi.org/10.1175/MWR-D-1300338.1.CrossRefGoogle Scholar
  6. Chen, X. M., Y. Q. Wang, K. Zhao, and D. Wu, 2017: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of simulation, storm-scale evolution, and environmental contribution. Mon. Wea. Rev., 145, 877–898,  https://doi.org/10.1175/MWR-D16-0147.1.CrossRefGoogle Scholar
  7. Chen, X. M., Y. Q. Wang, J. Fang, and M. Xue, 2018: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes. J. Atmos. Sci., 75, 235–255,  https://doi.org/10.1175/JAS-D-17-0129.1.CrossRefGoogle Scholar
  8. Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 1835–1856,  https://doi.org/10.1175/JAS3921.1.CrossRefGoogle Scholar
  9. Deng, L., Y. H. Duan, W. H. Gao, and X. H. Zhang, 2016: Numerical simulation and comparison of cloud microphysical features of Super Typhoon Rammasun (2014). Acta Meteorological Sinica, 74, 697–714,  https://doi.org/10.11676/qxxb2016.058. (in Chinese)Google Scholar
  10. Duan, Y. H., R. S. Wu, R. L. Yu, and X. D. Liang, 2013: Numerical simulation of changes in tropical cyclone intensity using a coupled air-sea model. Acta Meteorologica Sinica, 27, 658–672,  https://doi.org/10.1007/s13351-013-0503-2.CrossRefGoogle Scholar
  11. Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107,  https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  12. Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430,  https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.CrossRefGoogle Scholar
  13. Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS. 11, 47 pp.Google Scholar
  14. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851,  https://doi.org/10.1029/2002JD003296.CrossRefGoogle Scholar
  15. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605,  https://doi.org/10.1175/1520-4669(1986)043<0585:AASITF>2.0.CO;2.CrossRefGoogle Scholar
  16. Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269,  https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.CrossRefGoogle Scholar
  17. Ge, X. Y., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859–3875,  https://doi.org/10.1175/JAS-D-13-066.1.CrossRefGoogle Scholar
  18. Gu, J.-F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511–530,  https://doi.org/10.1175/JAS-D-14-0050.1.CrossRefGoogle Scholar
  19. Gu, J.-F., Z.-M. Tan, and X. Qiu, 2016: Quadrant-dependent evolution of low-level tangential wind of a tropical cyclone in the shear flow. J. Atmos. Sci., 73, 1159–1177,  https://doi.org/10.1175/JAS-D-15-0165.1.CrossRefGoogle Scholar
  20. Hack, J. J., and W.H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559–1573,  https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.CrossRefGoogle Scholar
  21. Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294–3315,  https://doi.org/10.1175/2009MWR2679.1.CrossRefGoogle Scholar
  22. Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 1022–1034,  https://doi.org/10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.CrossRefGoogle Scholar
  23. Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Academic Press, 535 pp.Google Scholar
  24. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme. Journal of the Korean Meteorological Society, 42, 129–151.Google Scholar
  25. Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344,  https://doi.org/10.1175/2009MWR2989.1.CrossRefGoogle Scholar
  26. Jiang, H. Y., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 1164–1176,  https://doi.org/10.1175/MWR-D-11-00134.1.CrossRefGoogle Scholar
  27. Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteorol. Soc., 121, 821–851,  https://doi.org/10.1002/qj.49712152406.CrossRefGoogle Scholar
  28. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170–181,  https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  29. Kanada, S., and A. Wada, 2015: Numerical study on the extremely rapid intensification of an intense tropical cyclone: Typhoon Ida (1958). J. Atmos. Sci., 72, 4194–4217,  https://doi.org/10.1175/JAS-D-14-0247.1.CrossRefGoogle Scholar
  30. Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting., 18, 1093–1108,  https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.CrossRefGoogle Scholar
  31. Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220–241,  https://doi.org/10.1175/2009WAF2222280.1.CrossRefGoogle Scholar
  32. Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 1374–1396,  https://doi.org/10.1175/WAF-D-15-0032.1.CrossRefGoogle Scholar
  33. Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapragada, 2018: Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard (2014). J. Atmos. Sci., 75, 275–295,  https://doi.org/10.1175/JAS-D-17-0171.1.CrossRefGoogle Scholar
  34. Li, Q. Q., Y. Q. Wang and Y. H. Duan, 2017: A numerical study of outer rainband formation in a sheared tropical cyclone. J. Atmos. Sci., 74, 203–227,  https://doi.org/10.1175/JAS-D-16-0123.1.CrossRefGoogle Scholar
  35. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16663–16682,  https://doi.org/10.1029/97JD00237.CrossRefGoogle Scholar
  36. Molinari, J., J. Frank, D. Vollaro, 2013: Convective bursts, down-draft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 1048–1060,  https://doi.org/10.1175/MWR-D-12-00135.1.CrossRefGoogle Scholar
  37. Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 2493–2509,  https://doi.org/10.1175/JAS3291.1.CrossRefGoogle Scholar
  38. Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 3176–3207,  https://doi.org/10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2.CrossRefGoogle Scholar
  39. Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical-cyclone intensification. Australian Meteorological and Oceanographic Journal, 64, 37–66,  https://doi.org/10.22499/2.6401.005.CrossRefGoogle Scholar
  40. Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annual Review of Fluid Mechanics, 49, 541–574,  https://doi.org/10.1146/annurev-fluid-010816-060022.CrossRefGoogle Scholar
  41. Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New Insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteorol. Soc., 87, 1335–1347,  https://doi.org/10.1175/BAMS-87-10-1335.CrossRefGoogle Scholar
  42. Montgomery, M. T., J. A. Zhang, and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quart. J. Roy. Meteorol. Soc., 140, 2132–2146,  https://doi.org/10.1002/qj.2283.CrossRefGoogle Scholar
  43. Moon, I.-J., I. Ginis, T. Hara, and B. Thomas, 2007: A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135, 2869–2878,  https://doi.org/10.1175/MWR3432.1.CrossRefGoogle Scholar
  44. Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteorol., 112, 1–31,  https://doi.org/10.1023/B:BOUN.0000020164.04146.98.CrossRefGoogle Scholar
  45. Nguyen, L. T., and J. Molinari, 2015: Simulation of the downs-hear reformation of a tropical cyclone. J. Atmos. Sci., 72, 4529–4551,  https://doi.org/10.1175/JAS-D-15-0036.1.CrossRefGoogle Scholar
  46. Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. Journal of Advances in Modeling Earth Systems, 9, 908–931,  https://doi.org/10.1002/2016MS000796.CrossRefGoogle Scholar
  47. Reasor, P. D., and M. T. Montgomery, 2015: Evaluation of a heuristic model for tropical cyclone resilience. J. Atmos. Sci., 72, 1765–1782,  https://doi.org/10.1175/JAS-D-14-0318.1.CrossRefGoogle Scholar
  48. Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 3–22,  https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.CrossRefGoogle Scholar
  49. Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 9395–9414,  https://doi.org/10.5194/acp-11-9395-2011.CrossRefGoogle Scholar
  50. Riemer, M., and F. Laliberté, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 3517–3536,  https://doi.org/10.1175/JAS-D-14-0350.1.CrossRefGoogle Scholar
  51. Riemer, M., M. T. Montgomery, M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188,  https://doi.org/10.5194/acp-10-3163-2010.CrossRefGoogle Scholar
  52. Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327–346,  https://doi.org/10.5194/acp-13-327-2013.CrossRefGoogle Scholar
  53. Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 71–93,  https://doi.org/10.1175/JAS-D-15-0052.1.CrossRefGoogle Scholar
  54. Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970–2991,  https://doi.org/10.1175/MWR-D-1200357.1.CrossRefGoogle Scholar
  55. Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536–562,  https://doi.org/10.1175/MWR-D-14-00175.1.CrossRefGoogle Scholar
  56. Rogers, R. F., J. A. Zhang, J. Zawislak, H. Y. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 3355–3376,  https://doi.org/10.1175/MWR-D-16-0017.1.CrossRefGoogle Scholar
  57. Sanger, N. T., M. T. Montgomery, R. K. Smith, and M. M. Bell, 2014: An observational study of tropical cyclone spinup in Supertyphoon Jangmi (2008) from 24 to 27 September. Mon. Wea. Rev., 142, 3–28,  https://doi.org/10.1175/MWR-D-12-00306.1.CrossRefGoogle Scholar
  58. Simpson, R. H., and H. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proc. Tech. Conf. on Hurricanes, Miami Beach, FL, American Meteorological Society, D4.1-D4.10.Google Scholar
  59. Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, 113 pp.Google Scholar
  60. Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 3020–3031,  https://doi.org/10.1175/JAS-D-15-0017.1.CrossRefGoogle Scholar
  61. Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a Hurricane Weather Research and Forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteorol. Soc., 143, 293–308,  https://doi.org/10.1002/qj.2922.CrossRefGoogle Scholar
  62. Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Q. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 1283–1306,  https://doi.org/10.1175/JAS-D-14-0261.1.CrossRefGoogle Scholar
  63. Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817–1830,  https://doi.org/10.1175/2010JAS3318.1.CrossRefGoogle Scholar
  64. Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 2394–2413,  https://doi.org/10.1175/JAS-D-11-0232.1.CrossRefGoogle Scholar
  65. Tory, K. J., 2014: The turning winds with height thermal advection rainfall diagnostic: Why does it work in the tropics? Australian Meteorological and Oceanographic Journal, 64, 231–238,  https://doi.org/10.22499/2.6403.005.CrossRefGoogle Scholar
  66. Tory, K. J., R. A. Dare, N. E. Davidson, J. L. McBride, and S. S. Chand, 2013: The importance of low-deformation vorticity in tropical cyclone formation. Atmos. Chem. Phys., 13, 2115–2132,  https://doi.org/10.5194/acp-13-2115-2013.CrossRefGoogle Scholar
  67. Wang, B., and X. Zhou, 2008: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteorol. Atmos. Phys., 99, 1–16,  https://doi.org/10.1007/s00703-006-0238-z.CrossRefGoogle Scholar
  68. Wang, H., and Y. Q. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29–48,  https://doi.org/10.1175/MWR-D-13-00070.1.CrossRefGoogle Scholar
  69. Wang, X., Y. F. Ren, and X. Li, 2016: The warm-core structure of Super Typhoon Rammasun derived by FY-3C microwave temperature sounder measurements. Atmospheric Science Letters, 17, 432–436,  https://doi.org/10.1002/asl.675.CrossRefGoogle Scholar
  70. Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes-A review. Meteorol. Atmos. Phys., 87, 257–278,  https://doi.org/10.1007/s00703-003-0055-6.CrossRefGoogle Scholar
  71. Wang, Y. Q., Y. J. Rao, Z.-M. Tan, and D. Schönemann, 2015: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev., 143, 3434–3453,  https://doi.org/10.1175/MWR-D-15-0049.1.CrossRefGoogle Scholar
  72. Wei, M. Z., T. Zoltan, R. Wobus, Y. J. Zhu, C. H. Bishop, and X. G. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A, 28–44,  https://doi.org/10.1111/j.1600-0870.2006.00159.x.CrossRefGoogle Scholar
  73. Wei, M. Z., T. Zoltan, R. Wobus, and Y. J. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 62–79,  https://doi.org/10.1111/j.1600-0870.2007.00273.x.CrossRefGoogle Scholar
  74. Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859–1876,  https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.CrossRefGoogle Scholar
  75. Wu, L. G., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 65–86,  https://doi.org/10.1175/JAS3597.1.CrossRefGoogle Scholar
  76. Zagrodnik, J. P., and H. Y. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 2789–2809,  https://doi.org/10.1175/JAS-D-13-0314.1.CrossRefGoogle Scholar
  77. Zeng, Z. H., Y. Q. Wang, and C.-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity-An observational study. Mon. Wea. Rev., 135, 38–59,  https://doi.org/10.1175/MWR3278.1.CrossRefGoogle Scholar
  78. Zeng, Z. H., L. S. Chen, and Y. Q. Wang, 2008: An observational study of environmental dynamical control of tropical cyclone intensity in the Atlantic. Mon. Wea. Rev., 136, 3307–3322,  https://doi.org/10.1175/2008MWR2388.1.CrossRefGoogle Scholar
  79. Zeng, Z. H., Y. Q. Wang, Y. H. Duan, L. S. Chen, and Z. Q. Gao, 2010: On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv. Atmos. Sci., 27, 337–355,  https://doi.org/10.1007/s00376-009-8209-1.CrossRefGoogle Scholar
  80. Zhang, F. Q., and D. D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975–983,  https://doi.org/10.1175/JAS-D-12-0133.1.CrossRefGoogle Scholar
  81. Zhang, X. H., Y. H. Duan, Y. Q. Wang, N. Wei, and H. Hu, 2017: A high-resolution simulation of Supertyphoon Rammasun (2014)-Part I: Model verification and surface energetics analysis. Adv. Atmos. Sci., 34, 757–770,  https://doi.org/10.1007/s00376-017-6255-7.CrossRefGoogle Scholar
  82. Zhang, Z., V. Tallapragada, C. Kieu, S. Trahan, and W. G. Wang, 2014: HWRF based ensemble prediction system using perturbations from GEFS and stochastic convective trigger function. Tropical Cyclone Research and Review, 3, 145–161,  https://doi.org/10.6057/2014TCRR03.02.Google Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Xun Li
    • 1
    • 2
  • Noel E. Davidson
    • 3
  • Yihong Duan
    • 4
    Email author
  • Kevin J. Tory
    • 3
  • Zhian Sun
    • 3
  • Qinbo Cai
    • 1
    • 2
  1. 1.Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan ProvinceChina Meteorological AdministrationHaikou, HainanChina
  2. 2.Hainan Meteorological ServicesChina Meteorological AdministrationHaikou, HainanChina
  3. 3.Research and Development BranchBureau of MeteorologyMelbourneAustralia
  4. 4.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations