Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Simulations of Microphysics and Precipitation in a Stratiform Cloud Case over Northern China: Comparison of Two Microphysics Schemes


Using the Weather Research and Forecasting (WRF) model with two different microphysics schemes, the Predicted Particle Properties (P3) and the Morrison double-moment parameterizations, we simulated a stratiform rainfall event on 20-21 April 2010. The simulation output was compared with precipitation and aircraft observations. The aircraft-observed moderate-rimed dendrites and plates indicated that riming contributed significantly to ice particle growth at the mature precipitation stage. Observations of dendrite aggregation and capped columns suggested that aggregation coexisted with deposition or riming and played an important role in producing many large particles. The domain-averaged values of the 24-h surface precipitation accumulation from the two schemes were quite close to each other. However, differences existed in the temporal and spatial evolutions of the precipitation distribution. An analysis of the surface precipitation temporal evolution indicated faster precipitation in Morrison, while P3 indicated slower rainfall by shifting the precipitation pattern eastward toward what was observed. The differences in precipitation values between the two schemes were related to the cloud water content distribution and fall speeds of rimed particles. P3 simulated the stratiform precipitation event better as it captured the gradual transition in the mass-weighted fall speeds and densities from unrimed to rimed particles.


本文利用WRF模式中两种不同的微物理方案,包括P3和Morrison双参数化方案,模拟了2010年4月20-21日的一次层状云降水过程。模拟结果与地面降水和飞机入云探测资料进行了对比。机载探测仪器观测的中等程度凇附的辐枝状和板状粒子表明,降水成熟阶段凇附对冰雪晶增长起重要作用。辐枝状聚合体和丁帽柱状粒子的存在表明,聚并与凝华和凇附过程同时存在,是形成较大尺度冰相粒子的重要方式。两种微物理方案模拟的24-h 地面累积降水量区别不大,但是,降水的时间和空间分布上存在较明显差异。对地面降水分布随时间的演变分析表明,Morrison方案模拟的降水稍快,而P3方案模拟的降水有所延迟并且更接近地面观测。两种方案所模拟地面降水的差异与云水含量分布和凇附粒子降落末速有关。由于P3方案能体现冰相粒子凇附过程中质量-加权降落末速和密度的逐渐转化过程,因而可以更好地再现层状云降水过程。

This is a preview of subscription content, log in to check access.


  1. Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009JAS2883.1.

  2. Caniaux, G., J. L. Redelsperger, and J. P. Lafore, 1994: A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets. J. Atmos. Sci., 51, 2046–2074, https://doi.org/10.1175/1520-0469(1994)051<2046:ANSOTS>2.0.CO;2.

  3. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

  4. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

  5. Erfani, E., and D. L. Mitchell, 2017: Growth of ice particle mass and projected area during riming. Atmospheric Chemistry and Physics, 17, 1241–1257, https://doi.org/10.5194/acp-17-1241-2017.

  6. Fan, J. W., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I-Convective updrafts. J. Geophys. Res., 122(17), 9351–9378, https://doi.org/10.1002/2017JD026622.

  7. Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of iceparticle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 1997–2017, https://doi.org/10.1256/qj.04.134.

  8. Guo, X. L., and G. G. Zheng, 2009: Advances in weather modification from 1997 to 2007 in China. Adv. Atmos. Sci., 26, 240–252, https://doi.org/10.1007/s00376-009-0240-8.

  9. Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367–381, https://doi.org/10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2.

  10. Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 3457–3491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

  11. Heymsfield A. J., A. Bansemer, M. R. Poellot, and N. Wood, 2015: Observations of ice microphysics through the melting layer. J. Atmos. Sci., 72, 2902–2928, https://doi.org/10.1175/JAS-D-14-0363.1.

  12. Hobbs P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568–596, https://doi.org/10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2.

  13. Hogan R. J., M. D. Behera, E. J. O’Connor, and A. J. Illingworth, 2004: Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett., 31, L05106, https://doi.org/10.1029/2003GL018977.

  14. Hong S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.

  15. Hou T. J., H. C. Lei, and Z. X. Hu, 2010: A comparative study of the microstructure and precipitation mechanisms for two stratiform clouds in China. Atmospheric Research, 96, 447–460, https://doi.org/10.1016/j.atmosres.2010.02.004.

  16. Hou T. J., H. C. Lei, Z. X. Hu, and J. Zhou, 2014: Aircraft observations of ice particle properties in stratiform precipitating clouds. Advances in Meteorology, 2014, 206352, https://doi.org/10.1155/2014/206352.

  17. Hou T. J., H. C. Lei, J. F. Yang, Z. X. Hu, and Q. J. Feng, 2016: Investigation of riming within mixed-phase stratiform clouds using weather research and forecasting (WRF) model. Atmospheric Research, 178-179, 291–303, https://doi.org/10.1016/j.atmosres.2016.04.007.

  18. Kajikawa M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46, 3108–3121, https://doi.org/10.1175/1520-0469(1989)046<3108:AOICIC>2.0.CO;2.

  19. Korolev A., G. A. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 2873–2902, https://doi.org/10.1002/qj.49712656913.

  20. Lin Y. L., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 1013–1035, https://doi.org/10.1175/2010MWR3293.1.

  21. Locatelli J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185–2197, https://doi.org/10.1029/JC079i015p02185.

  22. Luo Y. L., Y. J. Wang, H. Y. Wang, Y. J. Zheng, and H. Morrison, 2010: Modeling convective-stratiform precipitation processes on a Mei-Yu front with the weather research and forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115, D18117, https://doi.org/10.1029/2010JD013873.

  23. Ma J. Z., X. L. Guo, C. S. Zhao, Y. J. Zhang, and Z. J. Hu, 2007: Recent progress in cloud physics research in China. Adv. Atmos. Sci., 24, 1121–1137, https://doi.org/10.1007/s00376-007-1121-7.

  24. McFarquhar G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 3405–3428, https://doi.org/10.1175/MWR3444.1.

  25. Milbrandt J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975–995, https://doi.org/10.1175/JAS-D-15-0204.1.

  26. Mlawer E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682, https://doi.org/10.1029/97JD00237.

  27. Molthan A. L., and B. A. Colle, 2012: Comparisons of singleand double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 2982–3002, https://doi.org/10.1175/MWR-D-11-00292.1.

  28. Molthan A. L., B. A. Colle, S. E. Yuter, and D. Stark, 2016: Comparisons of modeled and observed reflectivities and fall speeds for snowfall of varied riming degrees during winter storms on Long Island, New York. Mon. Wea. Rev., 144, 4327–4347, https://doi.org/10.1175/MWR-D-15-0397.1.

  29. Morrison H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 1528–1548, https://doi.org/10.1175/2007JAS2491.1.

  30. Morrison H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287–311, https://doi.org/10.1175/JAS-D-14-0065.1.

  31. Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665–1677, https://doi.org/10.1175/JAS3446.1.

  32. Morrison H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1.

  33. Morrison H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other Schemes. J. Atmos. Sci., 72, 312–339, https://doi.org/10.1175/JAS-D-14-0066.1.

  34. Naeger A. R., B. A. Colle, and A. Molthan, 2017: Evaluation of cloud microphysical schemes for a warm frontal snowband during the GPM Cold Season Precipitation Experiment (GCPEx). Mon. Wea. Rev., 145, 4627–4650, https://doi.org/10.1175/MWR-D-17-0081.1.

  35. Reisner J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107, https://doi.org/10.1002/qj.49712454804.

  36. Rutledge S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

  37. Schumacher C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 1739–1756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

  38. Smull B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117–133, https://doi.org/10.1175/1520-0493(1985)113<0117:AMSLWA>2.0.CO;2.

  39. Stoelinga M. T., J. D. Locatelli, and C. P. Woods, 2007: The occurrence of “irregular” ice particles in stratiform clouds. J. Atmos. Sci., 64, 2740–2750, https://doi.org/10.1175/JAS3962.1.

  40. Woods C. P., M. T. Stoelinga, and J. D. Locatelli, 2007: The IMPROVE-1 storm of 1-2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci., 64, 3927–3948, https://doi.org/10.1175/2007JAS2239.1.

  41. Woods C. P., J. D. Locatelli, and M. T. Stoelinga, 2008: The IMPROVE-1 storm of 1-2 February 2001. Part IV: Precipitation enhancement across the melting layer. J. Atmos. Sci., 65, 1087–1092, https://doi.org/10.1175/2007JAS2247.1.

  42. Yang J. F., H. C. Lei, Z. X. Hu, and T. J. Hou, 2014: Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China. Atmospheric Research, 142, 79–90, https://doi.org/10.1016/j.atmosres.2013.12.018.

  43. Yang J. F., H. C. Lei, and T. J. Hou, 2017: Observational evidence of high ice concentration in a shallow convective cloud embedded in stratiform cloud over North China. Adv. Atmos. Sci., 34, 509–520, https://doi.org/10.1007/s00376-016-6079-x.

  44. Zhang D. M., Z. E. Wang, P. Kollias, A. M. Vogelmann, K. Yang, and T. Luo, 2018: Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated ATrain measurements. Atmospheric Chemistry and Physics, 18, 4317–4327, https://doi.org/10.5194/acp-18-4317-2018.

  45. Zhao Z., and H. C. Lei, 2014: Aircraft observations of liquid and ice in midlatitude mixed-phase clouds. Adv. Atmos. Sci., 31, 604–610, https://doi.org/10.1007/s00376-013-3083-2.

  46. Zhu S. C., X. L. Guo, G. X. Lu, and L. J. Guo, 2015: Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in northern China. J. Atmos. Sci., 72, 2011–2032, https://doi.org/10.1175/JAS-D-14-0194.1.

Download references


The reviewers were very helpful in improving the manuscript. We acknowledge their thoughtful suggestions. This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFC1507900) and the National Natural Science Foundation of China (Grant Nos. 41575131, 41530427 and 41875172).

Author information

Correspondence to Tuanjie Hou.

Additional information

Article Highlights

• Riming and aggregation contributed significantly to ice particle growth.

• P3 provided slower rainfall than the Morrison scheme by shifting the precipitation pattern eastward toward what was observed.

• The differences in precipitation between the two schemes were related to the cloud water content and fall speeds of the rimed particles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, T., Lei, H., Hu, Z. et al. Simulations of Microphysics and Precipitation in a Stratiform Cloud Case over Northern China: Comparison of Two Microphysics Schemes. Adv. Atmos. Sci. 37, 117–129 (2020). https://doi.org/10.1007/s00376-019-8257-0

Download citation

Key words

  • stratiform cloud
  • riming
  • Weather Research and Forecasting model
  • fall speed


  • 层状云
  • 凇附
  • WRF模式
  • 降落末速