Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 8, pp 823–836 | Cite as

The Effect of Super Volcanic Eruptions on Ozone Depletion in a Chemistry-Climate Model

  • Luyang Xu
  • Ke WeiEmail author
  • Xue Wu
  • S. P. Smyshlyaev
  • Wen Chen
  • V. Ya. Galin
Original Paper

Abstract

With the gradual yet unequivocal phasing out of ozone depleting substances (ODSs), the environmental crisis caused by the discovery of an ozone hole over the Antarctic has lessened in severity and a promising recovery of the ozone layer is predicted in this century. However, strong volcanic activity can also cause ozone depletion that might be severe enough to threaten the existence of life on Earth. In this study, a transport model and a coupled chemistry-climate model were used to simulate the impacts of super volcanoes on ozone depletion. The volcanic eruptions in the experiments were the 1991 Mount Pinatubo eruption and a 100 × Pinatubo size eruption. The results show that the percentage of global mean total column ozone depletion in the 2050 RCP8.5 100 × Pinatubo scenario is approximately 6% compared to two years before the eruption and 6.4% in tropics. An identical simulation, 100 × Pinatubo eruption only with natural source ODSs, produces an ozone depletion of 2.5% compared to two years before the eruption, and with 4.4% loss in the tropics. Based on the model results, the reduced ODSs and stratospheric cooling lighten the ozone depletion after super volcanic eruption.

Key words

stratospheric ozone volcanic eruptions stratospheric aerosols chemistry-climate model 

摘 要

随着平流层中臭氧损耗物质(ODSs)的不断清除, 由南极上空臭氧空洞的发现所引发的环境危机正在减轻, 并且臭氧层也在逐渐恢复. 然而, 强火山活动同样会造成严重的臭氧损耗, 从而威胁地球上的生命. 在本研究中, 利用了一个大气输送模式和一个化学气候模式, 来模拟超级火山爆发后造成的臭氧损耗. 模拟的火山事件为1991年的皮纳图博(Pinatubo)火山以及一个100×Pinatubo级别的火山. 结果表明, 在2050 RCP8.5 100×Pinatubo情形下, 全球平均臭氧损耗和爆发前两年相比大约为6%, 赤道地区为6.4%. 而一个理想情形, 即100×Pinatubo在自然源ODSs全部清除, 只剩自然源的背景下爆发后, 全球平均臭氧损耗和爆发前两年相比为2.5%, 赤道地区为4.4%. 根据模式结果, ODSs含量的下降以及平流层降温能够减轻超级火山爆发后造成的臭氧损耗.

关键词

平流层臭氧 火山爆发 平流层气溶胶 化学气候模式 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Key Research and Development Project of China (Grant No. 2016YFA0600604), the National Natural Science Foundation of China (Grant No. 41461144001 and No. 41861144016), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2014064). We thank the two anonymous referees for their comments on the manuscript.

References

  1. Ambrose, S. H., 1998: Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. Journal of Human Evolution, 34, 623–651,  https://doi.org/10.1006/jhev.1998.0219. CrossRefGoogle Scholar
  2. Ansmann, A., I. Mattis, U. Wandinger, F. Wagner, J. Reichardt, and T. Deshler, 1997: Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over Central Europe at 53.4?N. J. At-mos. Sci., 54, 2630–2641,  https://doi.org/10.1175/1520-0469(1997)054<2630:EOTPAR>2.0.CO;2. CrossRefGoogle Scholar
  3. Aquila, V., L. D. Oman, R. Stolarski, A. R. Douglass, and P. A. Newman, 2013: The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at southern and northern mid-latitudes. J. Atmos. Sci., 70, 894–900,  https://doi.org/10.1175/jas-d-12-0143.1. CrossRefGoogle Scholar
  4. Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179–229,  https://doi.org/10.1029/1999rg000073. CrossRefGoogle Scholar
  5. Bekki, S., 1995: Oxidation of volcanic SO2: A sink for stratospheric OH and H2O. Geophys. Res. Lett., 22, 913–916,  https://doi.org/10.1029/95gl00534.CrossRefGoogle Scholar
  6. Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc}., 112, 677–691,  https://doi.org/10.1002/qj.49711247307.Google Scholar
  7. Bluth, G. J. S., S. D. Doiron, C. C. Schnetzler, A. J. Krueger, and L. S. Walter, 1992: Global tracking of the SO2 clouds from the June, 1991 Mount-Pinatubo eruptions. Geophys. Res. Lett., 19, 151–154,  https://doi.org/10.1029/91gl02792. CrossRefGoogle Scholar
  8. Bobrowski, N., G. Hönninger, B. Galle, and U. Platt, 2003: Detection of bromine monoxide in a volcanic plume. Nature, 423, 273–276,  https://doi.org/10.1038/nature01625.CrossRefGoogle Scholar
  9. Cadoux, A., B. Scaillet, S. Bekki, C. Oppenheimer, and T. H. Druitt, 2015: Stratospheric ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece). Scientific Reports, 5, 12243,  https://doi.org/10.1038/srep12243.CrossRefGoogle Scholar
  10. Cagnazzo, C., and Coauthors, 2009: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmospheric Chemistry and Physics, 9, 8935–8948,  https://doi.org/10.5194/acp-9-8935-2009.CrossRefGoogle Scholar
  11. Carslaw, K. S., B. P. Luo, S. L. Clegg, T. Peter, P. Brimblecombe, and P. J. Crutzen, 1994:. Geophys. Res. Lett., 21, 2479–2482,  https://doi.org/10.1029/94GL02799.CrossRefGoogle Scholar
  12. Chen, W., and T. Li, 2007: Modulation of northern hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the Quasi-Biennial Oscillation. J. Geophys. Res., 112, D20120,  https://doi.org/10.1029/2007jd008611.CrossRefGoogle Scholar
  13. Chen, W., and K. Wei, 2009: Interannual variability of the winter stratospheric polar vortex in the northern hemisphere and their relations to QBO and ENSO. Adv. Atmos. Sci., 26(5), 855–863,  https://doi.org/10.1007/s00376-009-8168-6.CrossRefGoogle Scholar
  14. Coffey, M. T., 1996: Observations of the impact of volcanic activity on stratospheric chemistry. J. Geophys. Res., 101, 6767–6780,  https://doi.org/10.1029/95jd03763.CrossRefGoogle Scholar
  15. Crutzen, P. J., and F. Arnold, 1986: Nitric acid cloud formation in the cold antarctic stratosphere: A major cause for the springtime “ozone hole”. Nature, 324, 651–655,  https://doi.org/10.1038/324651a0.CrossRefGoogle Scholar
  16. Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 1830–1841,  https://doi.org/10.1002/qj.493.CrossRefGoogle Scholar
  17. Delwiche, C. F., 2005: Voyage to the bottom of the tree. Science, 307, 676–677,  https://doi.org/10.1126/science.1105582.CrossRefGoogle Scholar
  18. Dvortsov, V. L., S. G. Zvenigorodsky, and S. P. Smyslaev, 1992: On the use of isaksen-luther method of computing photodissociation rates in photochemical models. J. Geophys. Res., 97, 7593–7601,  https://doi.org/10.1029/91JD02861.CrossRefGoogle Scholar
  19. Engel, A., H. Bönisch, J. Ostermöller, M. P. Chipperfield, S. Dhomse, and P. Jöckel, 2018: A refined method for calculating equivalent effective stratospheric chlorine. Atmospheric Chemistry and Physics, 18, 601–619,  https://doi.org/10.5194/acp-18-601-2018.CrossRefGoogle Scholar
  20. Fahey, D. W., and Coauthors, 1993: In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion. Nature, 363, 509–514.CrossRefGoogle Scholar
  21. Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in antarctica reveal seasonal CLOx/NOx interaction. Nature, 315, 207–210,  https://doi.org/10.1038/315207a0.CrossRefGoogle Scholar
  22. Free, M., and J. K. Angell, 2002: Effect of volcanoes on the vertical temperature profile in radiosonde data. J. Geophys. Res., 107, 4101,  https://doi.org/10.1029/2001jd001128.CrossRefGoogle Scholar
  23. Free, M., and J. Lanzante, 2009: Effect of volcanic eruptions on the vertical temperature profile in radiosonde data and climate models. J. Climate, 22, 2925–2939,  https://doi.org/10.1175/2008jcli2562.1.CrossRefGoogle Scholar
  24. Galin, V. Y., S. P. Smyshlyaev, and E. M. Volodin, 2007: Combined chemistry-climate model of the atmosphere. Izvestiya, Atmospheric and Oceanic Physics, 43, 399–412,  https://doi.org/10.1134/s0001433807040020.CrossRefGoogle Scholar
  25. Graf, H.-F., D. Zanchettin, C. Timmreck, and M. Bittner, 2014: Observational constraints on the tropospheric and near-surface winter signature of the northern hemisphere stratospheric polar vortex. Climate Dyn., 43, 3245–3266,  https://doi.org/10.1007/s00382-014-2101-0.CrossRefGoogle Scholar
  26. Hamilton, K., 1993: An examination of observed southern oscillation effects in the northern hemisphere stratosphere. J. At-mos. Sci., 50, 3468–3474,  https://doi.org/10.1175/1520-0469(1993)050<3468:AEOOSO>2.0.CO;2.CrossRefGoogle Scholar
  27. Hansen, J., M. Sato, G. Russell, and P. Kharecha, 2013: Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Society A: Mathematical, Physical and Engineering Sciences, 371, 20120294,  https://doi.org/10.1098/rsta.2012.0294.CrossRefGoogle Scholar
  28. Hanson, D. R., and A. R. Ravishankara, 1993: Reaction of ClONO2 with HCl on NAT, NAD, and frozen sulfuric-acid and hydrolysis of N2O5 and ClONO2 on frozen sulfuric-acid. J. Geophys. Res., 98, 22931–22936,  https://doi.org/10.1029/93jd01929.CrossRefGoogle Scholar
  29. Hines, C. O., 1997: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 371–386,  https://doi.org/10.1016/s1364-6826(96)00079-X.CrossRefGoogle Scholar
  30. Hoffmann, L., T. Rößler, S. Griessbach, Y. Heng, and O. Stein, 2016: Lagrangian transport simulations of volcanic sulfur dioxide emissions: Impact of meteorological data products. J. Geophys. Res., 121, 4651–4673, https://doi.org/10.1002/2015jd023749.Google Scholar
  31. Hofmann, D. J., and Coauthors, 1994: Ozone loss in the lower stratosphere over the United-States in 1992-1993: Evidence for heterogeneous chemistry on the pinatubo aerosol. Geophys. Res. Lett., 21, 65–68,  https://doi.org/10.1029/93gl02526.CrossRefGoogle Scholar
  32. Holton, J. R., and H. C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208,  https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.CrossRefGoogle Scholar
  33. Hunton, D. E., and Coauthors, 2005: In-situ aircraft observations of the 2000 Mt. Hekla volcanic cloud: Composition and chemical evolution in the Arctic lower stratosphere. Journal of Volcanology and Geothermal Research, 145, 23–34,  https://doi.org/10.1016/j.jvolgeores.2005.01.005.CrossRefGoogle Scholar
  34. Joshi, M. M., and G. S. Jones, 2009: The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions. Atmospheric Chemistry and Physics, 9, 6109–6118,  https://doi.org/10.5194/acp-9-6109-2009.CrossRefGoogle Scholar
  35. Jouzel, J., and Coauthors, 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–796,  https://doi.org/10.1126/science.1141038.CrossRefGoogle Scholar
  36. Klobas, J. E., D. M. Wilmouth, D. K. Weisenstein, J. G. Anderson, and R. J. Salawitch, 2017: Ozone depletion following future volcanic eruptions. Geophys. Res. Lett., 44, 7490–7499,  https://doi.org/10.1002/2017GL073972.CrossRefGoogle Scholar
  37. Kremser, S., and Coauthors, 2016: Stratospheric aerosol-observations, processes, and impact on climate. Rev. Geophys., 54, 278–335,  https://doi.org/10.1002/2015rg000511.CrossRefGoogle Scholar
  38. Kutterolf, S., T. H. Hansteen, K. Appel, A. Freundt, K. Krüger, W. Pérez, and H. Wehrmann, 2013: Combined bromine and chlorine release from large explosive volcanic eruptions: A threat to stratospheric ozone? Geology, 41, 707–710,  https://doi.org/10.1130/g34044.1.CrossRefGoogle Scholar
  39. Lanzante, J. R., 2007: Diagnosis of radiosonde vertical temperature trend profiles: Comparing the influence of data homog-enization versus model forcings. J. Climate, 20, 5356–5364,  https://doi.org/10.1175/2007jcli1827.1.CrossRefGoogle Scholar
  40. Lean, J. L., and D. H. Rind, 2009: How will Earth's surface temperature change in future decades? Geophys. Res. Lett., 36, L15708,  https://doi.org/10.1029/2009gl038932.CrossRefGoogle Scholar
  41. LeGrande, A. N., K. Tsigaridis, and S. E. Bauer, 2016: Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections. Nature Geoscience, 9, 652–655,  https://doi.org/10.1038/ngeo2771.CrossRefGoogle Scholar
  42. Legras, B., B. Joseph, and F. Lefèvre, 2003: Vertical diffusivity in the lower stratosphere from Lagrangian back-trajectory reconstructions of ozone profiles. J. Geophys. Res., 108, 4562, https://doi.org/Artn456210.1029/2002jd003045.CrossRefGoogle Scholar
  43. Legras, B., I. Pisso, G. Berthet, and F. Lefèvre, 2005: Variability of the Lagrangian turbulent diffusion in the lower stratosphere. Atmospheric Chemistry and Physics, 5, 1605–1622,  https://doi.org/10.5194/acp-5-1605-2005.CrossRefGoogle Scholar
  44. Lisiecki, L. E., and M. E. Raymo, 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic delta δ18O records. Paleoceanography and Paleoclimatology, 20, PA1003,  https://doi.org/10.1029/2004pa001071.Google Scholar
  45. Lurton, T., F. Jégou, G. Berthet, J. B. Renard, L. Clarisse, A. Schmidt, C. Brogniez, and T. J. Roberts, 2018: Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations. Atmospheric Chemistry and Physics, 18, 3223–3247,  https://doi.org/10.5194/acp-18-3223-2018.CrossRefGoogle Scholar
  46. Marshall, L., and Coauthors, 2018: Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmospheric Chemistry and Physics, 18, 2307–2328,  https://doi.org/10.5194/acp-18-2307-2018.CrossRefGoogle Scholar
  47. Mather, T. A., 2015: Volcanoes and the environment: Lessons for understanding Earth's past and future from studies of present-day volcanic emissions. Journal of Volcanology and Geothermal Research, 304, 160–179,  https://doi.org/10.1016/j.jvolgeores.2015.08.016.CrossRefGoogle Scholar
  48. McCormick, M. P., L. W. Thomason, and C. R. Trepte, 1995: Atmospheric effects of the Mt Pinatubo eruption. Nature, 373, 399–404,  https://doi.org/10.1038/373399a0.CrossRefGoogle Scholar
  49. McGee, T. J., P. Newman, M. Gross, U. Singh, S. Godin, A. M. Lacoste, and G. Megie, 1994: Correlation of ozone loss with the presence of volcanic aerosols. Geophys. Res. Lett., 21, 2801–2804,  https://doi.org/10.1029/94gl02350.CrossRefGoogle Scholar
  50. Muthers, S., F. Arfeuille, C. C. Raible, and E. Rozanov, 2015: The impacts of volcanic aerosol on stratospheric ozone and the northern hemisphere polar vortex: Separating radiative-dynamical changes from direct effects due to enhanced aerosol heterogeneous chemistry. Atmospheric Chemistry and Physics, 15, 11461–11476,  https://doi.org/10.5194/acp-15-11461-2015.CrossRefGoogle Scholar
  51. Oppenheimer, C., 2002: Limited global change due to the largest known Quaternary eruption, Toba ≈ 74 kyr BP? Quaternary Science Reviews, 21, 1593–1609,  https://doi.org/10.1016/S0277-3791(01)00154-8.CrossRefGoogle Scholar
  52. Oppenheimer, C., and Coauthors, 2010: Atmospheric chemistry of an Antarctic volcanic plume. J. Geophys. Res., 115, D04303,  https://doi.org/10.1029/2009jd011910.Google Scholar
  53. Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039,  https://doi.org/10.1002/qj.49711247406.CrossRefGoogle Scholar
  54. Peter, T., 1997: Microphysics and heterogeneous chemistry of polar stratospheric clouds. Annu. Rev. Phys. Chem., 48, 785–822,  https://doi.org/10.1146/annurev.physchem.48.1.785.CrossRefGoogle Scholar
  55. Petraglia, M. D., R. Korisettar, and J. N. Pal, 2012: The Toba volcanic super-eruption of 74,000 years ago: Climate change, environments, and evolving humans. Quaternary International, 258, 1–4,  https://doi.org/10.1016/j.quaint.2011.12.001.CrossRefGoogle Scholar
  56. Pisso, I., E. Real, K. S. Law, B. Legras, N. Bousserez, J. L. Attié, and H. Schlager, 2009: Estimation of mixing in the troposphere from Lagrangian trace gas reconstructions during long-range pollution plume transport. J. Geophys. Res., 114, 12882,  https://doi.org/10.1029/2008jd011289.CrossRefGoogle Scholar
  57. Poberaj, C. S., J. Staehelin, and D. Brunner, 2011: Missing stratospheric ozone decrease at southern hemisphere middle latitudes after Mt. Pinatubo: A dynamical perspective. J. Atmos. Sci., 68, 1922–1945,  https://doi.org/10.1175/JAS-D-10-05004.1.CrossRefGoogle Scholar
  58. Rampino, M. R., 2002: Supereruptions as a threat to civilizations on earth-like planets. Icarus, 156, 562–569,  https://doi.org/10.1006/icar.2001.6808.CrossRefGoogle Scholar
  59. Rampino, M. R., and S. Self, 1992: Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359, 50–52,  https://doi.org/10.1038/359050a0.CrossRefGoogle Scholar
  60. Randel, W. J., F. Wu, J. M. Russell III, J. W. Waters, and L. Froidevaux, 1995: Ozone and temperature-changes in the stratosphere following the eruption of Mount-Pinatubo. J. Geophys. Res., 100, 16753–16764,  https://doi.org/10.1029/95jd01001.CrossRefGoogle Scholar
  61. Randel, W. J., A. K. Smith, F. Wu, C.-Z. Zou, and H. F. Qian, 2016: Stratospheric temperature trends over 1979–2015 derived from combined SSU, MLS, and SABER satellite observations. J. Climate, 29, 4843–4859,  https://doi.org/10.1175/JCLI-D-15-0629.1.CrossRefGoogle Scholar
  62. Ren, R.-C., M. Cai, C. Y. Xiang, and G. X. Wu, 2012: Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Climate Dyn., 38, 1345–1358,  https://doi.org/10.1007/s00382-011-1137-7.CrossRefGoogle Scholar
  63. Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219,  https://doi.org/10.1029/1998rg000054.CrossRefGoogle Scholar
  64. Robock, A., C. M. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov, 2009: Did the Toba volcanic eruption of ≈ 74 ka B. P. produce widespread glaciation? J. Geophys. Res., 114, D10107,  https://doi.org/10.1029/2008jd011652.CrossRefGoogle Scholar
  65. Roscoe, H. K., 2001: The risk of large volcanic eruptions and the impact of this risk on future ozone depletion. Natural Hazards, 23, 231–246,  https://doi.org/10.1023/A:1011178016473.CrossRefGoogle Scholar
  66. Rosi, M., M. Paladio-Melosantos, A. Di Muro, R. Leoni, and T. Bacolcol, 2001: Fall vs flow activity during the 1991 climactic eruption of Pinatubo Volcano (Philippines). Bulletin of Volcanology, 62, 549–566,  https://doi.org/10.1007/s004450000118.CrossRefGoogle Scholar
  67. Rößler, T., O. Stein, Y. Heng, P. Baumeister, and L. Hoffmann, 2018: Trajectory errors of different numerical integration schemes diagnosed with the MPTRAC advection module driven by ECMWF operational analyses. Geoscientific Model Development, 11, 575–592,  https://doi.org/10.5194/gmd-11-575-2018.CrossRefGoogle Scholar
  68. Sander, S. P., and Coauthors, 2003: Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation Number 14. JPL Publication 02-25, National Aeronautics and Space Administration. [Available online from http://www.iup.uni-bremen.de/~bms/lectures/JPL02-25rev02.pdf]Google Scholar
  69. Santer, B. D., and Coauthors, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28033–28059,  https://doi.org/10.1029/2000jd000189.CrossRefGoogle Scholar
  70. Schmidt, A., and Coauthors, 2016: Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nature Geoscience, 9, 77–82,  https://doi.org/10.1038/ngeo2588.CrossRefGoogle Scholar
  71. Schoeberl, M. R., and D. L. Hartmann, 1991: The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science, 251, 46–52,  https://doi.org/10.1126/science.251.4989.46.CrossRefGoogle Scholar
  72. Smyshlyaev, S. P., V. L. Dvortsov, M. A. Geller, and V. A. Yudin, 1998: A two-dimensional model with input parameters from a general circulation model: Ozone sensitivity to different formulations for the longitudinal temperature variation. J. Geophys. Res., 103, 28 373–28 387,  https://doi.org/10.1029/98JD02354.CrossRefGoogle Scholar
  73. Smyshlyaev, S. P., V. Y. Galin, G. Shaariibuu, and M. A. Motsakov. 2010: Modeling the variability of gas and aerosol components in the stratosphere of polar regions. Izvestiya, Atmospheric and Oceanic Physics, 46, 265–280,  https://doi.org/10.1134/s0001433810030011.CrossRefGoogle Scholar
  74. Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275–316,  https://doi.org/10.1029/1999rg900008.CrossRefGoogle Scholar
  75. Solomon, S., D. Kinnison, J. Bandoro, and R. Garcia, 2015: Simulation of polar ozone depletion: An update. J. Geophys. Res., 120, 7958–7974,  https://doi.org/10.1002/2015JD023365.CrossRefGoogle Scholar
  76. Solomon, S., D. J. Ivy, D. Kinnison, M. J. Mills, R. R. Neely III, and A. Schmidt, 2016: Emergence of healing in the Antarctic ozone layer. Science, 353, 269–274,  https://doi.org/10.1126/science.aae0061.CrossRefGoogle Scholar
  77. Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden-Julian Oscillation. J. Climate, 30, 1909–1922,  https://doi.org/10.1175/Jcli-D-16-0620.1.CrossRefGoogle Scholar
  78. SPARC, 2013: SPARC report on the lifetimes of stratospheric ozone-depleting substances, their replacements, and related species. SPARC Report No. 6, WCRP-15/2013.Google Scholar
  79. Stenchikov, G., K. Hamilton, R. J. Stouffer, A. Robock, V. Ramaswamy, B. Santer, and H.-F. Graf, 2006: Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107,  https://doi.org/10.1029/2005jd006286.CrossRefGoogle Scholar
  80. Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461–2474,  https://doi.org/10.5194/acp-5-2461-2005.CrossRefGoogle Scholar
  81. Tabazadeh, A., and R. P. Turco, 1993: Stratospheric chlorine injection by volcanic eruptions: HCI scavenging and implications for ozone. Science, 260, 1082–1086,  https://doi.org/10.1126/science.260.5111.1082.CrossRefGoogle Scholar
  82. Tabazadeh, A., K. Drdla, M. R. Schoeberl, P. Hamill, and O. B. Toon, 2002: Arctic “ozone hole” in a cold volcanic stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 99, 2609–2612,  https://doi.org/10.1073/pnas.052518199.CrossRefGoogle Scholar
  83. Telford, P., P. Braesicke, O. Morgenstern, and J. Pyle, 2009: Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM. Atmospheric Chemistry and Physics, 9, 4251–4260,  https://doi.org/10.5194/acp-9-4251-2009.CrossRefGoogle Scholar
  84. Vidal, C. M., N. Métrich, J.-C. Komorowski, I. Pratomo, A. Michel, N. Kartadinata, V. Robert, and F. Lavigne, 2016: The 1257 Samalas eruption (Lombok, Indonesia): The single greatest stratospheric gas release of the Common Era. Scientific Reports, 6, 34868,  https://doi.org/10.1038/srep34868.CrossRefGoogle Scholar
  85. von Glasow, R., N. Bobrowski, and C. Kern, 2009: The effects of volcanic eruptions on atmospheric chemistry. Chemical Geology, 263, 131–142,  https://doi.org/10.1016/j.chemgeo.2008.08.020.CrossRefGoogle Scholar
  86. Wei, K., W. Chen, and R. H. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the northern hemisphere winter. Geophys. Res. Lett., 34, L16814,  https://doi.org/10.1029/2007GL030478.Google Scholar
  87. Williams, M., 2012: Did the 73 ka Toba super-eruption have an enduring effect? Insights from genetics, prehistoric archaeology, pollen analysis, stable isotope geochemistry, geomor-phology, ice cores, and climate models. Quaternary International, 269, 87–93,  https://doi.org/10.1016/j.quaint.2011.03.045.CrossRefGoogle Scholar
  88. World Meteorological Organization (WMO), 2007: Scientific assessment of ozone depletion: Global ozone research and monitoring project. Report No. 50, Geneva, Switzerland, 572 pp.Google Scholar
  89. World Meteorological Organization (WMO), 2014: Scientific Assessment of Ozone Depletion, 2014. World Meteorological Organization, Global Ozone Research And Monitoring Project, Report No. 55, Geneva, Switzerland, 416 pp.Google Scholar
  90. World Meteorological Organization (WMO), 2018: Scientific Assessment of Ozone Depletion, 2018. World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 58, Geneva, Switzerland, 588 pp.Google Scholar
  91. Wu, S. N., S. T. Chen, and F. C. Duan, 2012: The relation between the 72 ka BP Event and the toba super-eruption. Advance in Earth Science, 27, 35–41,  https://doi.org/10.11867/j.issn.1001-8166.2012.01.0035. (in Chinese with English abstract)Google Scholar
  92. Wu, X., S. Griessbach, and L. Hoffmann, 2017: Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: A case study of the Sarychev eruption in 2009. Atmospheric Chemistry and Physics, 17, 13439–13455,  https://doi.org/10.5194/acp-17-13439-2017.CrossRefGoogle Scholar
  93. Wu, X., S. Griessbach, and L. Hoffmann, 2018: Long-range transport of volcanic aerosol from the 2010 Merapi tropical eruption to Antarctica. Atmospheric Chemistry and Physics, 18, 15859–15877,  https://doi.org/10.5194/acp-18-15859-2018.CrossRefGoogle Scholar
  94. Wyser, K., 1998: The effective radius in large-scale models: Impact of aerosols and coalescence. Atmospheric Research, 49, 213–234,  https://doi.org/10.1016/S0169-8095(98)00081-7.CrossRefGoogle Scholar
  95. Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chemistry and Physics, 12, 5259–5273,  https://doi.org/10.5194/acp-12-5259-2012.CrossRefGoogle Scholar
  96. Xie, F., J. P. Li, W. S. Tian, J. K. Zhang, and C. Sun, 2014: The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environmental Research Letters, 9, 064020,  https://doi.org/10.1088/1748-9326/9/6/064020.CrossRefGoogle Scholar
  97. Xie, F., X. Zhou, J. P. Li, C. Sun, J. Feng, and X. Ma, 2018: The key role of background sea surface temperature over the cold tongue in asymmetric responses of the Arctic stratosphere to El Niño-Southern Oscillation. Environmental Research Letters, 13, 114007,  https://doi.org/10.1088/1748-9326/aae79b.CrossRefGoogle Scholar
  98. Yu, J.-Y., H.-Y. Kao, T. Lee, and S. T. Kim, 2011: Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol., 103, 337–344,  https://doi.org/10.1007/s00704-010-0307-6.CrossRefGoogle Scholar
  99. Zhu, Y. Q., and Coauthors, 2018: Stratospheric aerosols, polar stratospheric clouds, and polar ozone depletion after the Mount Calbuco eruption in 2015. J. Geophys. Res., 123, 12 308–12 331,  https://doi.org/10.1029/2018jd028974.Google Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luyang Xu
    • 1
    • 2
  • Ke Wei
    • 1
    Email author
  • Xue Wu
    • 3
  • S. P. Smyshlyaev
    • 4
  • Wen Chen
    • 1
  • V. Ya. Galin
    • 5
  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Middle Atmosphere and Global Environment ObservationInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  4. 4.Russian State Hydrometeorological UniversitySt. PetersburgRussia
  5. 5.Institute of Numerical Mathematics, Russian Academy of SciencesMoscowRussia

Personalised recommendations