Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 6, pp 643–657 | Cite as

A Hybrid Coupled Ocean-Atmosphere Model and Its Simulation of ENSO and Atmospheric Responses

  • Junya Hu
  • Rong-Hua ZhangEmail author
  • Chuan Gao
Original Paper
  • 15 Downloads

Abstract

A new hybrid coupled model (HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate ocean model (IOM) of the intermediate coupled model (ICM) used at the Institute of Oceanology, Chinese Academy of Sciences (IOCAS). The atmospheric component is ECHAM5, the fifth version of the Max Planck Institute for Meteorology atmospheric general circulation model. The HCM integrates its atmospheric and oceanic components by using an anomaly coupling strategy. A 100-year simulation has been made with the HCM and its simulation skills are evaluated, including the interannual variability of SST over the tropical Pacific and the ENSO-related responses of the global atmosphere. The model shows irregular occurrence of ENSO events with a spectral range between two and five years. The amplitude and lifetime of ENSO events and the annual phase-locking of SST anomalies are also reproduced realistically. Despite the slightly stronger variance of SST anomalies over the central Pacific than observed in the HCM, the patterns of atmospheric anomalies related to ENSO, such as sea level pressure, temperature and precipitation, are in broad agreement with observations. Therefore, this model can not only simulate the ENSO variability, but also reproduce the global atmospheric variability associated with ENSO, thereby providing a useful modeling tool for ENSO studies. Further model applications of ENSO modulations by ocean-atmosphere processes, and of ENSO-related climate prediction, are also discussed.

Key words

IOCAS ICM hybrid coupled model ENSO simulation atmospheric response 

摘要

ENSO是气候系统中最强的年际信号且具有广泛的气候影响, 所以, 对ENSO的模拟和预测具有重要的意义. 海气耦合模式是实现模拟和预测ENSO的主要工具, 其中, 简单海气耦合模式的动力过程简单, 一般为仅限于热带太平洋海域的距平模式, 计算量小, 但无法直接模拟和预测ENSO引起的全球范围的气候异常; 而全球海气耦合模式的物理过程更为复杂和完善, 可以直接模拟和预测热带外的气候异常, 但是一直受到“气候漂移”问题的困扰. 所以, 希望发展一个耦合模式, 既没有气候漂移, 又能够预测全球气候变化. 因此, 本文将热带太平洋区域海洋模式和全球大气环流模式耦合, 构建了一个新的混合型海气耦合模式(HCM), 其中, 海洋部分为中国科学院海洋研究所海气耦合模式(IOCAS ICM)的简单海洋模式, 大气部分为德国马普气象研究所的第五代大气环流模式(ECHAM5). 海洋和大气之间通过距平的动量通量和热量通量耦合. 利用HCM 100年模拟积分的结果, 对模式中ENSO及其全球大气响应的模拟进行了分析. 结果表明, 与IOCAS ICM相比, HCM中的ENSO事件具有显著的不规则性, 主要周期为2-5年振荡, 模拟的ENSO强度, 循环和季节锁相都与观测更为一致. 另外, HCM的大气分量表现出显著的年际变化, 冬, 夏季海平面气压, 温度, 降水和异常环流的分布与观测基本相符. 所以, 该模式不仅能够模拟ENSO及全球大气响应, 而且能够避免气候漂移, 计算量也远远小于复杂的全球海气耦合模式, 进而为ENSO模拟和预测研究提供了新的工具.

关键词

IOCAS ICM 混合型耦合模式 ENSO 大气响应 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NFSC; Grant No. 41706016), the National Programme on Global Change and Air-Sea Interaction (Grant No. GASI-IPOVAI-06), the NFSC [Grant Nos. 41690122(41690120), 41606019 and 41421005], the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19060102), and the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406402).

References

  1. An, S.-I., and B. Wang, 2001: Mechanisms of locking of the El Niño and La Niña mature phases to boreal winter. J. Climate, 14, 2164–2176, https://doi.org/10.1175/1520-0442(2001)014<2164:MOLOTE>2.0.CO;2.Google Scholar
  2. Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007,  https://doi.org/10.1029/2006JC003798.Google Scholar
  3. Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. H. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631–651,  https://doi.org/10.1175/BAMS-D-11-00111.1.Google Scholar
  4. Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L. L’Heureux, 2017: Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Climate Dyn.,  https://doi.org/10.1007/s00382-017-3603-3. (in press)Google Scholar
  5. Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, 11–15.Google Scholar
  6. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.Google Scholar
  7. Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827–832,  https://doi.org/10.1038/321827a0.Google Scholar
  8. Chen, D. K., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 1699–1702,  https://doi.org/10.1126/science.269.5231.1699.Google Scholar
  9. Chen, D. K., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428(6984), 733–736,  https://doi.org/10.1038/nature02439.Google Scholar
  10. Chen, D. K., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 8, 339–345,  https://doi.org/10.1038/ngeo2399.Google Scholar
  11. Davey, M., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18, 403–420,  https://doi.org/10.1007/s00382-001-0188-6.Google Scholar
  12. Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. J. Climate, 19(5), 643–674,  https://doi.org/10.1175/JCLI3629.1.Google Scholar
  13. Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 1845–1862,  https://doi.org/10.1002/joc.631.Google Scholar
  14. Duan, W. S., B. Tian, and H. Xu, 2014: Simulations of two types of El Niño events by an optimal forcing vector approach. Climate Dyn., 43, 1677–1692,  https://doi.org/10.1007/s00382-013-1993-4.Google Scholar
  15. Duan, W. S., X. C. Liu, K. Y. Zhu, and M. Mu, 2009: Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res., 114, C04022,  https://doi.org/10.1029/2008JC004925.Google Scholar
  16. Fedorov, A. V., 2002: The response of the coupled tropical ocean-atmosphere to westerly wind bursts. Quart. J. Roy. Meteor. Soc., 128(579), 1–23,  https://doi.org/10.1002/qj.200212857901.Google Scholar
  17. Fedorov, A. V., S. N. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of Westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44(5–6), 1381–1401,  https://doi.org/10.1007/s00382-014-2126-4.Google Scholar
  18. Gao, C., and R. H. Zhang, 2017: The roles of atmospheric wind and entrained water temperature (T e) in the second-year cooling of the 2010–12 La Niña event. Climate Dyn., 48, 597–617,  https://doi.org/10.1007/s00382-016-3097-4.Google Scholar
  19. Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Annals of Geophysics, 46(1), 1–26,  https://doi.org/10.4401/ag-3385.Google Scholar
  20. Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Z. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean-atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325–340,  https://doi.org/10.1175/2008BAMS2387.1.Google Scholar
  21. Gupta, A. S., N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26(21), 8597–8615,  https://doi.org/10.1175/JCLI-D-12-0052L1.Google Scholar
  22. Hayashi, M., and M. Watanab, 2017: ENSO complexity induced by state dependence of westerly wind events. J. Climate, 30(9), 3401–3420,  https://doi.org/10.1175/JCLI-D-16-0406.1.Google Scholar
  23. Hou, Z. L., J. P. Li, R. Q. Ding, J. Feng, and W. S. Duan, 2017: The application of nonlinear local Lyapunov vectors to the Zebiak-Cane model and their performance in ensemble prediction. Climate Dyn., 51, 283–304,  https://doi.org/10.1007/s00382-017-3920-6.Google Scholar
  24. Hu, S. N., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett., 41, 4654–4663,  https://doi.org/10.1002/2014GL059573.Google Scholar
  25. Huang, B. Y., and Coauthors, 2014: Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part I: Upgrades and intercomparisons. J. Climate, 28, 911–930,  https://doi.org/10.1175/JCLI-D-14-00006.1.Google Scholar
  26. Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808,  https://doi.org/10.1029/2009GL040000.Google Scholar
  27. Hurrell, J. W., and Coauthors, 2013: The community earth system model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94(9), 1339–1360,  https://doi.org/10.1175/BAMS-D-12-00121.1.Google Scholar
  28. Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dyn., 31(6), 647–664,  https://doi.org/10.1007/s00382-008-0397-3.Google Scholar
  29. Jin, F.-F., S.-I. An, A. Timmermann, and J. X. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120,  https://doi.org/10.1029/2002GL016356.Google Scholar
  30. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.Google Scholar
  31. Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-pacific and central-pacific types of ENSO. J. Climate, 22(3), 615–632,  https://doi.org/10.1175/2008JCLI2309.1.Google Scholar
  32. Keenlyside, N., 2001: Improved modeling of zonal currents and SST in the tropical Pacific. PhD dissertation, Monash University, 193 pp.Google Scholar
  33. Keenlyside, N., and R. Kleeman, 2002: Annual cycle of equatorial zonal currents in the Pacific. J. Geophys. Res., 107, 3093,  https://doi.org/10.1029/2000JC000711.Google Scholar
  34. Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29(23), 2125,  https://doi.org/10.1029/2002g1015924.Google Scholar
  35. Kug, J. S., F. F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22(6), 1499–1515,  https://doi.org/10.1175/2008JCLI2624.1.Google Scholar
  36. Latif, M., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18, 255–276,  https://doi.org/10.1007/s003820100174.Google Scholar
  37. Lengaigne, M., E. Guilyardi, J.-P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23(6), 601–620,  https://doi.org/10.1007/s00382-004-0457-2.Google Scholar
  38. Levitus, S., 1982: Climatological atlas of the world ocean. NOAA Prof. Paper 13, 173 pp.Google Scholar
  39. Lian, T., D. K. Chen, Y. M. Tang, and Q. Y. Wu, 2014: Effects of westerly wind bursts on El Niño: A new perspective. Geophys. Res. Lett., 41, 3522–3527,  https://doi.org/10.1002/2014GL059989.Google Scholar
  40. Liu, W., and Coauthors, 2014: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Climate, 28, 931–951,  https://doi.org/10.1175/JCLI-D-14-00007.1.Google Scholar
  41. Lopez, H., and B. P. Kirtman, 2013: Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys. Res. Lett., 40, 4722–4727,  https://doi.org/10.1002/grl.50913.Google Scholar
  42. Lopez, H., and B. P. Kirtman, 2014: WWBs, ENSO predictability, the spring barrier and extreme events. J. Geophys. Res., 119, 10 114–10 138,  https://doi.org/10.1002/2014JD021908.Google Scholar
  43. Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J. Climate, 18(13), 2344–2360,  https://doi.org/10.1175/JCLI3404.1.Google Scholar
  44. McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, 298, 603–635,  https://doi.org/10.1098/rsta.1981.0002.Google Scholar
  45. McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283(5404), 950–954,  https://doi.org/10.1126/science.283.5404.950.Google Scholar
  46. McPhaden, M. J., and X. R. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26(19), 2961–2964,  https://doi.org/10.1029/1999GL004901.Google Scholar
  47. McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 1740–1745,  https://doi.org/10.1126/science.1132588.Google Scholar
  48. Mu, M., W. S. Duan, and B. Wang, 2007a: Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113,  https://doi.org/10.1029/2005JD006981.Google Scholar
  49. Mu, M., H. Xu, and W. S. Duan, 2007b: A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys. Res. Lett., 34, L03709,  https://doi.org/10.1029/2006GL027412.Google Scholar
  50. Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.Google Scholar
  51. Reynolds, R. W., and T. M. Smith, 1995: A high-resolution global sea surface temperature climatology. J. Climate, 8, 1571–1583, https://doi.org/10.1175/1520-0442(1995)008<1571:AHRGSS>2.0.CO;2.Google Scholar
  52. Richter, I., 2015: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. WIREs Climate Change, 6(3), 345–358,  https://doi.org/10.1002/wcc.338.Google Scholar
  53. Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. Max Planck Institute for Meteorology Rep., 349, 127 pp.Google Scholar
  54. Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115(8), 1606–1626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.Google Scholar
  55. Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902–937,  https://doi.org/10.1002/2016RG000538.Google Scholar
  56. Stricherz., J. N., D. M. Legler, and J. J. O’Brien, 1995: TOGA Pseudo-Stress Atlas 1985–1994. Volume II, Pacific Ocean, Florida State University, 173 pp.Google Scholar
  57. Tao, L.-J., R.-H. Zhang, and C. Gao, 2017: Initial error-induced optimal perturbations in ENSO predictions, as derived from an intermediate coupled model. Adv. Atmos. Sci., 34(6), 791–803,  https://doi.org/10.1007/s00376-017-6266-4.Google Scholar
  58. Tao, L.-J., C. Gao, and R.-H. Zhang, 2018: ENSO predictions in an intermediate coupled model influenced by removing initial condition errors in sensitive areas: A target observation perspective. Adv. Atmos. Sci., 35(7), 853–867,  https://doi.org/10.1007/s00376-017-7138-7.Google Scholar
  59. Timmermann, A., and Coauthors, 2018: El Niño-southern oscillation complexity. Nature, 559, 535–545,  https://doi.org/10.1038/s41586-018-0252-6.Google Scholar
  60. Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 291–14 324,  https://doi.org/10.1029/97JC01444.Google Scholar
  61. Tziperman, E., M. A. Cane, S. E. Zebiak, Y. Xue, and B. Blumenthal, 1998: Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Climate, 11, 2191–2199, https://doi.org/10.1175/1520-0442(1998)011<2191:LOENOS>2.0.CO;2.Google Scholar
  62. Vega-Westhoff, B., and R. L. Sriver, 2017: Analysis of ENSO’s response to unforced variability and anthropogenic forcing using CESM. Scientific Reports, 7, 18047,  https://doi.org/10.1038/s41598-017-18459-8.Google Scholar
  63. Wang, C. Z., L. P. Zhang, S.-K. Lee, L. X. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Clim. Change, 4(3), 201–205,  https://doi.org/10.1038/nclimate2118.Google Scholar
  64. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118(507), 877–926,  https://doi.org/10.1002/qj.49711850705.Google Scholar
  65. Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702,  https://doi.org/10.1029/2009GL038710.Google Scholar
  66. Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-Southern Oscillation. Mon. Wea. Rev., 115(10), 2262–2278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.Google Scholar
  67. Zhang, R.-H., 2015: A hybrid coupled model for the Pacific ocean-atmosphere system. Part I: Description and basic performance. Adv. Atmos. Sci., 32(3), 301–318,  https://doi.org/10.1007/s00376-014-3266-5.Google Scholar
  68. Zhang, R.-H., and C. Gao, 2016a: Role of subsurface entrainment temperature (T e) in the onset of El Niño events, as represented in an intermediate coupled model. Climate Dyn., 46, 1417–1435,  https://doi.org/10.1007/s00382-015-2655-5.Google Scholar
  69. Zhang, R.-H., and C. Gao, 2016b: The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event. Science Bulletin, 61(13), 1061–1070,  https://doi.org/10.1007/s11434-016-1064-4.Google Scholar
  70. Zhang, R.-H., A. J. Busalacchi, and D. G. DeWitt, 2008: The roles of atmospheric stochastic forcing (SF) and oceanic entrainment temperature (T e) in decadal modulation of ENSO. J. Climate, 21, 674–704,  https://doi.org/10.1175/2007JCLI1665.1.Google Scholar
  71. Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30, 2012,  https://doi.org/10.1029/2003GL018010.Google Scholar
  72. Zhang, R.-H., F. Zheng, J. Zhu, and Z. G. Wang, 2013: A successful real-time forecast of the 2010–11 La Niña event. Scientific Reports, 3, 1108,  https://doi.org/10.1038/srep01108.Google Scholar
  73. Zhang, R.-H., A. J. Busalacchi, R. G. Murtugudde, E. C. Hackert, and J. Ballabrera-Poy, 2004: A new approach to improved SST anomaly simulations using altimeter data: Parameterizing entrainment temperature from sea level. Geophys. Res. Lett., 31, L10304,  https://doi.org/10.1029/2003GL019237.Google Scholar
  74. Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2005b: Retrospective El Niño forecasts using an improved intermediate coupled model. Mon. Wea. Rev., 133, 2777–2802,  https://doi.org/10.1175/MWR3000.1.Google Scholar
  75. Zhang, R.-H., R. Kleeman, S. E. Zebiak, N. Keenlyside, and S. Raynaud, 2005a: An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model. J. Climate, 18, 350–371,  https://doi.org/10.1175/JCLI-327L1.Google Scholar
  76. Zheng, F., J. Zhu, R.-H. Zhang, and G.-Q. Zhou, 2006: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33, L19604,  https://doi.org/10.1029/2006GL026994.Google Scholar
  77. Zhu, Y. C., and R.-H. Zhang, 2017: Scaling wind stirring effects in an oceanic bulk mixed layer model with application to an OGCM of the tropical Pacific. Climate Dyn., 51, 1927–1946,  https://doi.org/10.1007/s00382-017-3990-5.Google Scholar
  78. Zhu, Y. C., and R.-H. Zhang, 2018: An Argo-derived background diffusivity parameterization for improved ocean simulations in the tropical pacific. Geophys. Res. Lett., 45, 1509–1517,  https://doi.org/10.1002/2017GL076269.Google Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chinese Academy of Sciences Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Pilot National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations