Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 8, pp 811–822 | Cite as

Simulated Influence of the Atlantic Multidecadal Oscillation on Summer Eurasian Nonuniform Warming since the Mid-1990s

  • Xueqian Sun
  • Shuanglin LiEmail author
  • Xiaowei Hong
  • Riyu Lu
Original Paper

Abstract

Based on ensemble experiments with three atmospheric general circulation models (AGCMs), this study investigates the role of the Atlantic Multidecadal Oscillation (AMO) in shaping the summer nonuniform warming over the Eurasian continent since the mid-1990s. The results validate that the positive-phase AMO can indeed cause nonuniform warming, with predominant amplified warming over Europe-West Asia and Northeast Asia, but with much weaker warming over Central Asia. The underlying mechanism is then diagnosed from the perspective that the boundary forcing modulates the intrinsic atmospheric variability. The results highlight the role of the Silk Road Pattern (SRP), an intrinsic teleconnection pattern across the subtropical Eurasian continent propagating along the Asian jet. The SRP can not only be identified from the AGCM control experiments with the climatological sea surface temperature (SST), but can also be simulated by the AMO-related SST anomaly (SSTA) forcing. Furthermore, diagnostic linear baroclinic model experiments are conducted, and the results suggest that the SRP can be triggered by the AMO-related tropical diabatic heating. The AMO-triggered SRP-like responses feature anticyclonic circulations over Europe-West Asia and Northeast Asia, but cyclonic circulation over Central Asia. These responses cause increased warm advection towards Europe-West Asia and Northeast Asia, reduced precipitation and cloud cover, and then increased downward shortwave radiation. This increased warm advection and increased downward shortwave radiation together cause amplified warming in Europe-West Asia and Northeast Asia. The situation is opposite for Central Asia.

Keywords

Atlantic Multidecadal Oscillation nonuniform warming Silk Road Pattern 

摘 要

本文基于三个大气环流模式(AGCMs)的集合试验, 探究了北大西洋多年代际振荡(AMO)在1990s中期后欧亚大陆夏季不均匀增暖中的作用. 结果表明正位相AMO会造成不均匀增暖, 具体表现为欧洲-西亚和东北亚增暖较强, 中亚增暖较弱. 从边界强迫调节大气内部变率的角度进一步诊断AMO的影响机制. 研究结果强调了丝绸之路波列(SRP)的重要作用, 该波列是沿亚洲急流传播的, 跨副热带欧亚大陆的大气遥相关型. SRP不仅能在气候态海温(SST)强迫的AGCM参照试验中识别, 还可以被AMO海温异常强迫试验模拟. 此外, 线性斜压模式的试验结果表明, 与AMO有关的热带非绝热加热异常同样会激发SRP. AMO激发的类SRP响应在欧洲-西亚和东北亚地区是反气旋环流, 在中亚地区是气旋环流. 该环流型造成欧洲-西亚和东北亚暖平流加强, 降水和云覆盖率减少, 向下的短波辐射增加. 加强的暖平流和向下的短波辐射共同导致欧洲-西亚和东北亚增暖加强. 中亚情况相反.

关键词

北大西洋多年代际振荡(AMO) 不均匀增暖 丝绸之路波列(SRP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of Ministry of Science and Technology of China (Grant 2018YFA0606403 and 2015CB453202).

References

  1. Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2004: Verifying the reanalysis and climate models outputs using a 56-year data set of reconstructed global precipitation. Proc. 14th AMS Conference on Applied Meteorology, Washington, Amer. Meteor. Soc.Google Scholar
  2. Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077–2080,  https://doi.org/10.1029/2000GL012745 CrossRefGoogle Scholar
  3. Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157–178,  https://doi.org/10.1256/qj.01.211 CrossRefGoogle Scholar
  4. Hagos, S., and Coauthors, 2010: Estimates of tropical diabatic heating profiles: Commonalities and uncertainties. J. Climate, 23, 542–558,  https://doi.org/10.1175/2009JCLI3025.1 CrossRefGoogle Scholar
  5. Han, Z., F. F. Luo, S. L. Li, Y. Q. Gao, T. Furevik, and L. Svendsen, 2016: Simulation by CMIP5 models of the Atlantic multidecadal oscillation and its climate impacts. Adv. Atmos. Sci., 33(12), 1329–1342,  https://doi.org/10.1007/s00376-016-5270-4.CrossRefGoogle Scholar
  6. Hao, X., S. P. He, and H. J. Wang, 2016: Asymmetry in the response of central Eurasian winter temperature to AMO. Climate Dyn., 47(7-8), 2139–2154,  https://doi.org/10.1007/s00382-015-2955-9.CrossRefGoogle Scholar
  7. Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. International Journal of Climatology, 34, 623–642,  https://doi.org/10.1002/joc.3711.CrossRefGoogle Scholar
  8. Hong, X. W., and R. Y. Lu, 2016: The meridional displacement of the summer Asian jet, silk road pattern, and tropical SST anomalies. J. Climate, 29, 3753–3766,  https://doi.org/10.1175/JCLI-D-15-0541.1.CrossRefGoogle Scholar
  9. Hong, X. W., R. Y. Lu, and S. L. Li, 2017: Amplified summer warming in Europe-West Asia and Northeast Asia after the mid-1990s. Environmental Research Letters, 12, 094007,  https://doi.org/10.1088/1748-9326/aa7909.
  10. Ionita, M., G. Lohmann, N. Rimbu, S. Chelcea, and M. Dima, 2012: Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature. Climate Dyn., 38(1-2), 363–377,  https://doi.org/10.1007/s00382-011-1028-y.CrossRefGoogle Scholar
  11. Ionita, M., N. Rimbu, S. Chelcea, and S. Patrut, 2013: Multidecadal variability of summer temperature over Romania and its relation with Atlantic multidecadal oscillation. Theor. Appl. Climatol., 113(1-2), 305–315,  https://doi.org/10.1007/s00704-012-0786-8.CrossRefGoogle Scholar
  12. Jin, F. F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307–319,  https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.CrossRefGoogle Scholar
  13. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3), 437–472,  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  14. Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 567–18 589,  https://doi.org/10.1029/97JC01736.CrossRefGoogle Scholar
  15. Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706,  https://doi.org/10.1029/2006GL026242.CrossRefGoogle Scholar
  16. Kosaka, Y., J. S. Chowdary, S. P. Xie, Y. M. Min, and J. Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J. Climate, 25, 7574–7589,  https://doi.org/10.1175/JCLI-D-12-00009.1.CrossRefGoogle Scholar
  17. Li, S. L., 2004: Impact of Northwest Atlantic SST Anomalies on the Circulation over the Ural Mountains during Early Winter. J. Meteor. Soc. Japan, 82, 971–988.CrossRefGoogle Scholar
  18. Li, S. L., and G. T. Bates, 2007: Influence of the Atlantic multi-decadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24(1), 126–135,  https://doi.org/10.1007/s00376-007-0126-6.CrossRefGoogle Scholar
  19. Li, S. L., J. Perlwitz, M. P. Hoerling, and X. T. Chen, 2010: Opposite annular responses of the northern and southern hemispheres to Indian Ocean warming. J. Climate, 23, 3720–3738,  https://doi.org/10.1175/2010JCLI3410.1.CrossRefGoogle Scholar
  20. Lu, R. Y., J. H. Oh, and B. J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54, 44–55,  https://doi.org/10.1034/j.1600-0870.2002.00248.x.CrossRefGoogle Scholar
  21. Mohino, E., S. Janicot, and J. Bader, 2011: Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dyn., 37(3-4), 419–440,  https://doi.org/10.1007/s00382-010-0867-2.CrossRefGoogle Scholar
  22. Peng, S. L., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 1393–1408,  https://doi.org/10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2.CrossRefGoogle Scholar
  23. Shao, X. L., S. L. Li, N. Liu, and J. Song, 2018: The Madden-Julian oscillation during the 2016 summer and its possible impact on rainfall in China. International Journal of Climatology, 38, 2575–2589,  https://doi.org/10.1002/joc.5440.CrossRefGoogle Scholar
  24. Sun, J. Q., H. J. Wang, and W. Yuan, 2008: Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature. J. Geophys. Res., 113, D15107,  https://doi.org/10.1029/2007JD009626.CrossRefGoogle Scholar
  25. Ting, M. F., and S. L. Peng, 1995: Dynamics of the early and middle winter atmospheric responses to the northwest Atlantic SST anomalies. J. Climate, 8, 2239–2254,  https://doi.org/10.1175/1520-0442(1995)008<2239:DOTEAM>2.0.CO;2.CrossRefGoogle Scholar
  26. Ting, M. F., Y. Kushnir, R. Seager, and C. H. Li, 2009: Forced and internal Twentieth-century SST trends in the North Atlantic. J. Climate, 22, 1469–1481,  https://doi.org/10.1175/2008JCLI2561.1.CrossRefGoogle Scholar
  27. Ting, M. F., Y. Kushnir, R. Seager, and C. H. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705,  https://doi.org/10.1029/2011GL048712.CrossRefGoogle Scholar
  28. Wang, Y. M., S. L. Li, and D. H. Luo, 2009: Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation. J. Geophys. Res., 114, D02112, https://doi.org/10.1029/2008JD010929.Google Scholar
  29. Wang, Y. M., S. L. Li, D. H. Luo, and J. J. Fu, 2010: Nonlinearity in the Asian monsoonal climate response to Atlantic multi-decadal oscillation. Periodical of Ocean University of China, 40(6), 19–26,  https://doi.org/10.16441/j.cnki.hdxb.2010.06.003. (in Chinese)Google Scholar
  30. Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627,  https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.CrossRefGoogle Scholar
  31. Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett., 33(17), L17712,  https://doi.org/10.1029/2006GL026267.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xueqian Sun
    • 1
    • 4
  • Shuanglin Li
    • 1
    • 2
    • 4
    Email author
  • Xiaowei Hong
    • 1
  • Riyu Lu
    • 3
    • 4
  1. 1.Climate Change Research CenterInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  2. 2.Department of Atmospheric ScienceChina University of GeosciencesWuhanChina
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid DynamicsInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  4. 4.College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations