Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 4, pp 339–345 | Cite as

First Rocketsonde Launched from an Unmanned Semi-submersible Vehicle

  • Hongbin ChenEmail author
  • Jun Li
  • Yuejian Xuan
  • Xiaosong Huang
  • Weifeng Zhu
  • Keping Zhu
  • Wenzheng Shao
News & Views

Abstract

The unmanned semi-submersible vehicle (USSV) developed by the unmanned surface vehicle team of the Institute of Atmospheric Physics is an unmanned, rugged, and high-endurance autonomous navigation vessel designed for the collection of long-term, continuous and real-time marine meteorological measurements, including atmospheric sounding in the lower troposphere. A series of river and sea trials were conducted from May 2016 to November 2017, and the first rocketsonde was launched from the USSV. Real-time meteorological parameters in the marine atmospheric boundary layer (MABL) were obtained, including sea surface temperature, and vertical profiles of the pressure, temperature, relative humidity, wind speed, and wind direction. These data are extremely useful and important for research on air–sea interactions, sea surface heat and latent heat flux estimations, MABL modeling, and marine satellite product validation.

Key words

unmanned semi-submersible vehicle rocketsonde marine meteorological observation marine atmospheric boundary layer 

摘 要

中国科学院大气物理研究所无人船团队研制了一款自动驾驶的半潜式无人船, 能够自动化, 长航时, 远距离并在复杂海况条件下工作, 能够开展连续, 实时的海上气象观测, 以及海洋大气层边界层的气象探空观测. 2016 年 5 月至2017年 11 月该型半潜式无人船进行了一系列河试和海试, 并首次在无人船上发射了探空火箭; 获得了实时的海上气象观测数据, 海表温度和海上边界层内的温度, 湿度, 气压以及风速和风向垂直廓线. 这些海洋气象观测数据可以促进海-气相互作用, 海气界面感热和潜热通量的估算, 海洋边界层模拟和海洋卫星产品验证等的研究.

关键词

半潜式无人船 火箭探空 海洋气象观测 海洋边界层 

Notes

Acknowledgements

This work is supported by the Research Equipment Development Project of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No. 41627808). The authors would like to acknowledge all the USSV team members for their tremendous efforts regarding the USSV-based meteorological observation system.

References

  1. Airmar, 2013: WX Series Ultrasonic WeatherStation Instruments: AIRMAR’s best-in-class, all-in-one solution for real-time, site-specific weather infromation. Installation & Owner’s Guides. [Available online from https://doi.org/www.airmar.com/weather-description.html?id=154.]
  2. Caress, D. W., and Coauthors, 2008: High-resolution multibeam, sidescan, and subbottom surveys using the MBARI AUV D. Allan B. Marine Habitat Mapping Technology for Alaska, J. R. Reynolds, and H. G. Greene, Eds., Alaska Sea Grant College Program, University of Alaska Fairbanks, 47–69,  https://doi.org/10.4027/mhmta.2008.04.Google Scholar
  3. Dai, H. L., N. X. Mou, C. Y. Wang, and M. Y. Tian, 2014: Development status and trend of ocean buoy in China. Meteorological, Hydrological and Marine Instruments, 118–121, 125,  https://doi.org/10.3969/j.issn.1006-009X.2014.02.032. (in Chinese)Google Scholar
  4. Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18(1), 32–44,  https://doi.org/10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.CrossRefGoogle Scholar
  5. Liquid Robotics, 2016: The New Economics of Marine Environmental Monitoring. White Paper, 1–12, [Available online from https://www.info.liquid-robotics.com/new-economicsof-marine-environmental-monitoring]Google Scholar
  6. Peng, S. Q., Y. H. Zhu, K. Huang, X. R. Ding, R. Shi, D. M. Wu, Y. R. Feng, and D. X. Wang, 2016: Detecting the structure of marine atmospheric boundary layer over the Northern South China Sea by shipboard GPS sondes. Atmosperic Science Letter, 17(12), 658,  https://doi.org/10.1002/asl.717.CrossRefGoogle Scholar
  7. Schofield, O., and Coauthors, 2010: A regional slocum glider network in the mid-atlantic bight leverages broad community engagement. Marine Technology Society Journal, 44(6), 185–195,  https://doi.org/10.4031/MTSJ.44.6.20.CrossRefGoogle Scholar
  8. Seidel, D. J., C. O. Ao, and K. Li. 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113,  https://doi.org/10.1029/2009JD013680.CrossRefGoogle Scholar
  9. Stern, D. P., G. H. Bryan, and S. D. Aberson, 2016: Extreme low-level updrafts and wind speeds measured by dropsondes in tropical cyclones. Mon. Wea. Rev., 144(6), 2177–2204,  https://doi.org/10.1175/MWR-D-15-0313.1.CrossRefGoogle Scholar
  10. Tang, M. Q., Z. Q. Zhang, and Y. Q. Xing, 2011: Analysis of new developments and key technologies of autonomous underwater vehicle in marine survey. Procedia Environmental Sciences, 10, 1992–1997,  https://doi.org/10.1016/j.proenv.2011.09.312.CrossRefGoogle Scholar
  11. US Dod, 2013: Unmanned Systems Integrated Roadmap FY 2013–2038. [Available from https://doi.org/info.publicintelligence.net/DoD-UnmannedRoadmap-2013.pdf]
  12. Vaisala, 2002: Vaisala launches the RK91 Rocketsonde. Vaisala News, 159/2002. [Available from https://doi.org/www.vaisala.com/sites/default/files/documents/VN159AllPages.pdf]
  13. Villareal, T. A., and C. Wilson, 2014: A comparison of the Pac-X Trans-Pacific wave glider data and satellite data (MODIS, Aquarius, TRMM and VIIRS). PLoS One, 9(4), e96968,  https://doi.org/10.1371/journal.pone.0096968.CrossRefGoogle Scholar
  14. Wynn, R. B., and Coauthors, 2014: Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology, 352, 451–468,  https://doi.org/10.1016/j.margeo.2014.03.012.CrossRefGoogle Scholar
  15. Yang, L., and Coauthors, 2015: Toward a mesoscale hydrological and marine meteorological observation network in the South China Sea. Bull. Amer. Meteor. Soc., 96(7), 1117–1135,  https://doi.org/10.1175/BAMS-D-14-00159.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hongbin Chen
    • 1
    • 2
    • 3
    Email author
  • Jun Li
    • 1
  • Yuejian Xuan
    • 1
  • Xiaosong Huang
    • 1
  • Weifeng Zhu
    • 1
  • Keping Zhu
    • 4
  • Wenzheng Shao
    • 4
  1. 1.Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric PhysicChinese Academy of SciencesBeijingChina
  2. 2.School of the Earth ScienceChinese Academy of Science UniversityBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  4. 4.Jiangxi Xinyu Guoke Technology Co., LtdXinyuChina

Personalised recommendations