Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 3, pp 279–291 | Cite as

Global Monsoon Changes under the Paris Agreement Temperature Goals in CESM1(CAM5)

  • Xia QuEmail author
  • Gang Huang
Original Paper
  • 31 Downloads

Abstract

Based on experiments with the Community Earth System Model, version 1 (Community Atmosphere Model, version 5) [CESM1(CAM5)], and an observational dataset, we found that CESM1-CAM5 is able to reproduce global monsoon (GM) features, including the patterns of monsoon precipitation and monsoon domains, the magnitude of GM precipitation (GMP, the local summer precipitation), GM area (GMA), and GM percentage (the ratio of the local summer precipitation to annual precipitation). Under the Paris Agreement temperature goals, the GM in CESM1-CAM5 displays the following changes: (1) The GMA is ambiguous under the 1.5°C temperature goal and increases under the 2.0°C temperature goal. The increase mainly results from a change in the monsoon percentage. (2) The GM, land monsoon and ocean monsoon precipitation all significantly increase under both the 1.5°C and 2.0°C goals. The increases are mainly due to the enhancement of humidity and evaporation. (3) The percentages of GM, land monsoon and ocean monsoon feature little change under the temperature goals. (4) The lengths of the GM, land monsoon and ocean monsoon are significantly prolonged under the temperature goals. The increase in precipitation during the monsoon withdrawal month mainly accounts for the prolonged monsoons. Regarding the differences between the 1.5°C and 2.0°C temperature goals, it is certain that the GMP displays significant discrepancies. In addition, a large-scale enhancement of ascending motion occurs over the southeastern Tibetan Plateau and South China under a warming climate, whereas other monsoon areas experience an overall decline in ascending motion. This leads to an extraordinary wetting over Asian monsoon areas.

Key words

global monsoon Paris Agreement temperature goals precipitation 

摘要

基于美国国家大气研究中心(NCAR)的CESM1(CAM5)模式的实验结果和观测数据,我们发现该模式有能力重现全球季风的特征,包括季风降水和区域的分布和全球季风降水、区域面积和季风降水百分比的量级(其中,季风降水指的是当地夏季平均降水,季风降水百分比是当地夏季总降水与年降水量的比值).在巴黎协定温度目标下,CESM1(CAM5)模式中的全球季风呈现出如下变化特征:(1)季风区大小在1.5°C温度目标下变化不清晰,在2.0°C温度目标下将增加,增加的原因是因为海洋上由更多区域的季风降水百分比达到了季风降水的定义数值.(2)全球、陆地和海洋季风降水在1.5°C和2.0°C温度目标下都将增加,大气中湿度和地球表面蒸发的增加是主要原因.(3)全球、陆地和海洋季风降水百分比在巴黎协定温度目标下几乎没有变化.(4)全球、陆地和海洋季风每年的持续时间将整体延长,季风撤退月平均降水的增加是延长的主要原因.可以确定的是,全球季风降水在1.5°C和2.0°C温度目标下存在明显差别.此外,在全球增温情景下,在青藏高原东南侧和中国华南地区上空存在着大尺度上升运动增强的现象,这与其他季风区上升运动减弱的现象不同.这也导致了全球增温背景下亚洲季风区相比其他季风将变得更加湿润.

关键词

全球季风 巴黎协定 温度目标 降水 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authos wish to thank the two anonymous reviewers for their insightful comments, which led to a significant improvement in the manuscript. The study was supported by the National Natural Sciences Foundation of China (Grant Nos. 41530425 and 41425019).

References

  1. Adler, R. F., Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.CrossRefGoogle Scholar
  2. Chadwick, R., P. L. Wu, P. Good, and T. Andrews, 2013: Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments. Climate Dyn., 40, 295–316, https://doi.org/10.1007/s00382-012-1287-2.CrossRefGoogle Scholar
  3. Chou, C., J. D. Neelin, C. A. Chen, and J. Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 1982–2005, https://doi.org/10.1175/2008JCLI2471.1.CrossRefGoogle Scholar
  4. Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 1704–1711, https://doi.org/10.1002/2013GL059158.CrossRefGoogle Scholar
  5. Endo, H., A. Kitoh, and H. Ueda, 2018: A unique feature of the Asian summer monsoon response to global warming: The role of different land-sea thermal contrast change between the lower and upper troposphere. Sola, 14, 57–63, https://doi.org/10.2151/sola.2018-010.CrossRefGoogle Scholar
  6. Good, P., B. B. B. Booth, R. Chadwick, E. Hawkins, A. Jonko, and J. A. Lowe, 2016: Large differences in regional precipitation change between a first and second 2 K of global warming. Nature Communications, 7, 13667, https://doi.org/10.1038/ncomms13667.CrossRefGoogle Scholar
  7. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1.CrossRefGoogle Scholar
  8. Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. R. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 2418–2427, https://doi.org/10.1175/2009JCLI3466.1.CrossRefGoogle Scholar
  9. Hirota, N., Y. N. Takayabu, M. Watanabe, and M. Kimoto, 2011: Precipitation reproducibility over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 climate models. J. Climate, 24, 4859–4873, https://doi.org/10.1175/2011JCLI4156.1.CrossRefGoogle Scholar
  10. Hsu, P. C., T. Li, and B. Wang, 2011: Trends in global monsoon area and precipitation over the past 30 years. Geophys. Res. Lett., 38, L08701, https://doi.org/10.1029/2011GL046893.CrossRefGoogle Scholar
  11. Hsu, P. C., T. Li, H. Murakami, and A. Kitoh, 2013: Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res., 118, 1247–1260, https://doi.org/10.1002/jgrd.50145.CrossRefGoogle Scholar
  12. Kay, J. E., Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1.CrossRefGoogle Scholar
  13. Kitoh, A., H. Endo, K. K. Kumar, I. F. A. Cavalcanti, P. Goswami, and T. J. Zhou, 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res., 118, 3053–3065, https://doi.org/10.1002/jgrd.50258.Google Scholar
  14. Lee, D., S.-K. Min, E. Fischer, H. Shiogama, I. Bethke, L. Lierhammer, and J. F. Scinocca, 2018: Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environmental Research Letters, 13, 044033, https://doi.org/10.1088/1748-9326/aab55d.CrossRefGoogle Scholar
  15. Lee, J. Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101–119, https://doi.org/10.1007/s00382-012-1564-0.CrossRefGoogle Scholar
  16. Long, S. M., S. P. Xie, X. T. Zheng, and Q. Y. Liu, 2014: Fast and slow responses to global warming: Sea surface temperature and precipitation patterns. J. Climate, 27, 285–299, https://doi.org/10.1175/JCLI-D-13-00297.1.CrossRefGoogle Scholar
  17. Sanderson, B. M., B. C. O’Neill, and C. Tebaldi, 2016: What would it take to achieve the Paris temperature targets? Geophys. Res. Lett., 43, 7133–7142, https://doi.org/10.1002/2016GL069563.CrossRefGoogle Scholar
  18. Sanderson, B. M., Coauthors, 2017: Community climate simulations to assess avoided impacts in 1.5°C and 2°C futures. Earth System Dynamics, 8, 827–847, https://doi.org/10.5194/esd-8-827-2017.CrossRefGoogle Scholar
  19. Seo, K. H., and J. Ok, 2013: Assessing future changes in the East Asian summer monsoon using CMIP3 Models: Results from the best model ensemble. J. Climate, 26, 1807–1817, https://doi.org/10.1175/JCLI-D-12-00109.1.CrossRefGoogle Scholar
  20. Seth, A., S. A. Rauscher, M. Biasutti, A. Giannini, S. J. Camargo, and M. Rojas, 2013: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Climate, 26, 7328–7351, https://doi.org/10.1175/JCLI-D-12-00726.1.CrossRefGoogle Scholar
  21. Sutton, R. T., B. W. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, https://doi.org/10.1029/2006GL028164.CrossRefGoogle Scholar
  22. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719.CrossRefGoogle Scholar
  23. UNFCCC, 2015: Adoption of the Paris Agreement. UNFCCC.Google Scholar
  24. Wang, B., and Q. H. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165–183, https://doi.org/10.1016/j.dynatmoce.2007.05.002.CrossRefGoogle Scholar
  25. Wang, B., S. Y. Yim, J. Y. Lee, J. Liu, and K. J. Ha, 2013: Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Climate Dyn., 42, 83–100, https://doi.org/10.1007/s00382-013-1769-x.CrossRefGoogle Scholar
  26. Wang, G. J., W. J. Cai, B. L. Gan, L. X. Wu, A. Santoso, X. P. Lin, Z. H. Chen, and M. J. McPhaden, 2017: Continued increase of extreme El Niño frequency long after 1.5°C warming stabilization. Nat. Clim. Change, 7, 568–572, https://doi.org/10.1038/nclimate3351.CrossRefGoogle Scholar
  27. Xie, P. P., and P. A. Arkin, 1997: Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.CrossRefGoogle Scholar
  28. Xie, S. P., C. Deser, G. A. Vecchi, J. Ma, H. Y. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966–986, https://doi.org/10.1175/2009JCLI3329.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Monsoon System Research, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Joint Center for Global Change Studies (JCGCS)BeijingChina

Personalised recommendations