Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 3, pp 271–278 | Cite as

The Relationship between Deterministic and Ensemble Mean Forecast Errors Revealed by Global and Local Attractor Radii

  • Jie Feng
  • Jianping LiEmail author
  • Jing Zhang
  • Deqiang Liu
  • Ruiqiang Ding
Original Paper
  • 22 Downloads

Abstract

It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic (or single) forecasts. However, few studies have focused on quantifying the relationship between their forecast errors, especially in individual prediction cases. Clarification of the characteristics of deterministic and ensemble mean forecasts from the perspective of attractors of dynamical systems has also rarely been involved. In this paper, two attractor statistics—namely, the global and local attractor radii (GAR and LAR, respectively)—are applied to reveal the relationship between deterministic and ensemble mean forecast errors. The practical forecast experiments are implemented in a perfect model scenario with the Lorenz96 model as the numerical results for verification. The sample mean errors of deterministic and ensemble mean forecasts can be expressed by GAR and LAR, respectively, and their ratio is found to approach \(\sqrt 2 \) with lead time. Meanwhile, the LAR can provide the expected ratio of the ensemble mean and deterministic forecast errors in individual cases.

Key words

attractor radius ensemble forecasting ensemble mean forecast error saturation 

摘要

前人研究表明集合平均预报在大样本平均的情况下比确定性(或单一)预报有更高的预报技巧.然而,很少研究关注它们预报误差之间的定量关系,尤其在一些个例预报中.同时,从动力系统吸引子的角度对确定性和集合平均预报的特征进行的研究也很少.本文利用吸引子的两个统计量即全局和局部吸引子半径来揭示确定性和集合平均预报误差的关系.基于Lorenz96模型的完美模式情景下的实际预报试验结果用来作为理论的检验.确定性预报和集合平均预报的样本平均误差可以分别用全局和局部吸引子半径来表达,它们的比值随着预报时间接近 \(\sqrt 2 \).同时,局部吸引子半径提供了确定性和集合平均预报误差在不同个例中的期望比值.

关键词

吸引子半径 集合预报 集合平均 预报误差饱和 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge funding from the National Natural Science Foundation of China (Grant Nos. 41375110 and 41522502).

References

  1. Basnarkov, L., and L. Kocarev, 2012: Forecast improvement in Lorenz 96 system. Nonlinear Processes in Geophysics, 19, 569–575, https://doi.org/10.5194/npg-19-569-2012.CrossRefGoogle Scholar
  2. Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 2887–2908, https://doi.org/10.1002/qj.49712556006.CrossRefGoogle Scholar
  3. Corazza, M., and Coauthors, 2003: Use of the breeding technique to estimate the structure of the analysis “errors of the day”. Nonlinear Processes in Geophysics, 10(3), 233–243, https://doi.org/10.5194/npg-10-233-2003.CrossRefGoogle Scholar
  4. Duan, W. S., and Z. H. Huo, 2016: An approach to generating mutually independent initial perturbations for ensemble forecasts: Orthogonal conditional nonlinear optimal perturbations. J. Atmos. Sci., 73, 997–1014, https://doi.org/10.1175/JAS-D-15-0138.1.CrossRefGoogle Scholar
  5. Eckmann, J.-P., and D. Ruelle, 1985: Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57, 617–656, https://doi.org/10.1103/RevModPhys.57.617.CrossRefGoogle Scholar
  6. Farmer, J. D., E. Ott, and J. A. Yorke, 1983: The dimension of chaotic attractors. Physica D, 7, 153–180, https://doi.org/10.1016/0167-2789(83)90125-2.CrossRefGoogle Scholar
  7. Feng, J., R. Q. Ding, D. Q. Liu, and J. P. Li, 2014: The application of nonlinear local Lyapunov vectors to ensemble predictions in Lorenz systems. J. Atmos. Sci., 71, 3554–3567, https://doi.org/10.1175/JAS-D-13-0270.1.CrossRefGoogle Scholar
  8. Houtekamer, P. L., and J. Derome, 1995: Methods for ensemble prediction. Mon. Wea. Rev., 123, 2181–2196, https://doi.org/10.1175/1520-0493(1995)123<2181:MFEP>2.0.CO;2.CrossRefGoogle Scholar
  9. Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 230 pp.Google Scholar
  10. Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409–418, https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.CrossRefGoogle Scholar
  11. Li, J. P., and J. F. Chou, 1997: Existence of the atmosphere attractor. Science in China Series D: Earth Sciences, 40(2), 215–220, https://doi.org/10.1007/BF02878381.CrossRefGoogle Scholar
  12. Li, J. P., and R. Q. Ding, 2015: Seasonal and interannual weather prediction. Encyclopedia of Atmospheric Sciences, 2nd ed., North et al., Eds., Academic Press and Elsevier, 303–312.CrossRefGoogle Scholar
  13. Li, J. P., J. Feng, and R. Q. Ding, 2018: Attractor radius and global attractor radius and their application to the quantification of predictability limits. Climate Dyn., 51(5–6), 2359–2374, https://doi.org/10.1007/s00382-017-4017-y.CrossRefGoogle Scholar
  14. Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.CrossRefGoogle Scholar
  15. Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17(3), 321–333, https://doi.org/10.1111/j.2153-3490.1965.tb01424.x.CrossRefGoogle Scholar
  16. Lorenz, E. N., 1996: Predictability: A problem partly solved. Proceedings of the Seminar on Predictability, Vol. I, Reading, UK, ECMWF Seminar, 1–18.Google Scholar
  17. Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399–414, https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.CrossRefGoogle Scholar
  18. Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–119, https://doi.org/10.1002/qj.49712252905.CrossRefGoogle Scholar
  19. Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus A, 56, 415–428, https://doi.org/10.3402/tellusa.v56i5.14462.CrossRefGoogle Scholar
  20. Szunyogh, I., and Z. Toth, 2002: The effect of increased horizontal resolution on the NCEP global ensemble mean forecasts. Mon. Wea. Rev., 130, 1125–1143, https://doi.org/10.1175/1520-0493(2002)130<1125:TEOIHR>2.0.CO;2.CrossRefGoogle Scholar
  21. Thompson, P. D., 1957: Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9(3), 275–295, https://doi.org/10.1111/j.2153-3490.1957.tb01885.x.CrossRefGoogle Scholar
  22. Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.CrossRefGoogle Scholar
  23. Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297–3319, https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.CrossRefGoogle Scholar
  24. Wang, X. G., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140–1158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.CrossRefGoogle Scholar
  25. Wei, M. Z., Z. Toth, R. Wobus, and Y. J. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus A, 60, 62–79, https://doi.org/10.1111/j.1600-0870.2007.00273.x.CrossRefGoogle Scholar
  26. Zheng, F., J. Zhu, H. Wang, and R. H. Zhang, 2009: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci., 26(2), 359–372, https://doi.org/10.1007/s00376-009-0359-7.CrossRefGoogle Scholar
  27. Ziehmann, C., L. A. Smith, and J. Kurths, 2000: Localized Lyapunov exponents and the prediction of predictability. Physics Letters A, 271(4), 237–251, https://doi.org/10.1016/S0375-9601(00)00336-4.CrossRefGoogle Scholar
  28. Zou, C. Z., X. J. Zhou, and P. C. Yang, 1985: The statistical structure of Lorenz strange attractors. Adv. Atmos. Sci., 2(2), 215–224, https://doi.org/10.1007/BF03179753.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jie Feng
    • 1
  • Jianping Li
    • 2
    • 3
    Email author
  • Jing Zhang
    • 4
  • Deqiang Liu
    • 5
    • 6
  • Ruiqiang Ding
    • 7
    • 8
  1. 1.School of MeteorologyUniversity of OklahomaNormanUSA
  2. 2.College of Global Change and Earth System Science (GCESS)Beijing Normal UniversityBeijingChina
  3. 3.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Cooperative Institute for Research in the AtmosphereGSD/ESRL/OAR/NOAABoulderUSA
  5. 5.Fujian Meteorological ObservatoryFuzhouChina
  6. 6.Wuyishan National Park Meteorological ObservatoryWuyishanChina
  7. 7.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  8. 8.Plateau Atmosphere and Environment Key Laboratory of Sichuan ProvinceChengdu University of Information TechnologyChengduChina

Personalised recommendations