Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 3, pp 253–260 | Cite as

Predictability of South China Sea Summer Monsoon Onset

  • Gill M. MartinEmail author
  • Amulya Chevuturi
  • Ruth E. Comer
  • Nick J. Dunstone
  • Adam A. Scaife
  • Daquan Zhang
Original Paper

Abstract

Predicting monsoon onset is crucial for agriculture and socioeconomic planning in countries where millions rely on the timely arrival of monsoon rains for their livelihoods. In this study we demonstrate useful skill in predicting year-to-year variations in South China Sea summer monsoon onset at up to a three-month lead time using the GloSea5 seasonal forecasting system. The main source of predictability comes from skillful prediction of Pacific sea surface temperatures associated with El Niño and La Niña. The South China Sea summer monsoon onset is a known indicator of the broadscale seasonal transition that represents the first stage of the onset of the Asian summer monsoon as a whole. Subsequent development of rainfall across East Asia is influenced by subseasonal variability and synoptic events that reduce predictability, but interannual variability in the broadscale monsoon onset for East Asian summer monsoon still provides potentially useful information for users about possible delays or early occurrence of the onset of rainfall over East Asia.

Key words

SCSSM South China Sea summer monsoon EASM East Asian summer monsoon 

摘要

季风爆发的预测对农业和社会经济的规划有着重要作用,数以百万计人们的生活都依赖于季风雨季的到来.本文利用GloSea5季节预测模型研究了南海季风爆发年际变化提前三个月的可预测性.这种可预测性的主要来源是与ENSO有关的太平洋海温的预测技巧.南海夏季风爆发是大范围季节转型的标志,代表了整个亚洲夏季风爆发的第一阶段.尽管随后东亚地区降水由于受到次季节尺度和天气尺度事件的影响而造成可预测性降低,但对东亚夏季风建立年际变化的预测仍然能够为用户提供季风雨季到来或早或晚这种有用的信息.

关键词

SCSSM 南海夏季风 EASM 东亚夏季风 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work and its contributors (GM, AC, RC, ND and AS) were supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. DZ was supported by the National Natural Science Foundation of China (Grant No. 41605078).

References

  1. Bett, P. E., and Coauthors, 2018: Seasonal forecasts of the summer 2016 Yangtze River basin rainfall. Adv. Atm. Sci., 35, 918–926, https://doi.org/10.1007/s00376-018-7210-y.CrossRefGoogle Scholar
  2. Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.CrossRefGoogle Scholar
  3. Chan, J. C. L., Y. G. Wang, and J. J. Xu, 2000: Dynamic and thermodynamic characteristics associated with the onset of the 1998 South China Sea summer monsoon. J. Meteor. Soc. Japan, 78, 367–380, https://doi.org/10.2151/jmsj1965.78.4367.CrossRefGoogle Scholar
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  5. Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142, https://doi.org/10.1007/s00703-005-0125-z.CrossRefGoogle Scholar
  6. Ding, Y. H., and C. He, 2006: The summer monsoon onset over the tropical eastern Indian Ocean: The earliest onset process of the Asian summer monsoon. Adv. Atmos. Sci, 23, 940–950, https://doi.org/10.1007/s00376-006-0940-2.CrossRefGoogle Scholar
  7. Dunstone, N., D. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nature Geoscience, 9, 809–814, https://doi.org/10.1038/ngeo2824.CrossRefGoogle Scholar
  8. Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 5620–5628, https://doi.org/10.1002/2014GL061146.CrossRefGoogle Scholar
  9. Fang, Y. J., and Coauthors, 2016: High-resolution simulation of the boreal summer intraseasonal oscillation in Met Office Unified model. Quart. J. Roy. Meteor. Soc., 143, 362–373, https://doi.org/10.1002/qj.2927.CrossRefGoogle Scholar
  10. Gao, H., Y. K. Tan, and J. J. Liu, 2001: Definition of 40-year onset date of South China Sea Summer Monsoon. Journal of Nanjing Institute of Meteorology, 24, 379–383, https://doi.org/10.3969/j.issn.1674-7097.2001.03.012. (in Chinese with English abstract)Google Scholar
  11. Hardiman, S. C., and Coauthors, 2018: The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña. Environmental Research Letters, 13(2), 024015, https://doi.org/10.1088/1748-9326/aaa172.CrossRefGoogle Scholar
  12. He, B., Y. Zhang, T. Li, and W.-T. Hu, 2017: Interannual variability in the onset of the South China Sea summer monsoon from 1997 to 2014. Atmospheric and Oceanic Science LettersLetterLetter, 10, 73–81, https://doi.org/10.1080/16742834.2017.1237853.CrossRefGoogle Scholar
  13. He, J. H., and Z. W. Zhu, 2015: The relation of South China Sea monsoon onset with the subsequent rainfall over the subtropical East Asia. International Journal of Climatology, 35, 4547–4556, https://doi.org/10.1002/joc.4305.CrossRefGoogle Scholar
  14. He, Z. Q., and R. G. Wu, 2013: Seasonality of interannual atmosphere–ocean interaction in the South China Sea. Journal of Oceanography, 69, 699–712, https://doi.org/10.1007/s10872-013-0201-9.CrossRefGoogle Scholar
  15. Hu, W. T., R. G. Wu, and Y. Liu, 2014: Relation of the South China Sea precipitation variability to tropical Indo-Pacific SST anomalies during spring-to-summer transition. J. Climate, 27, 5451–5467, https://doi.org/10.1175/JCLI-D-14-00089.1.CrossRefGoogle Scholar
  16. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  17. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, https://doi.org/10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  18. Kumar, A., M. Y. Chen, and W. Q. Wang, 2013: Understanding prediction skill of seasonal mean precipitation over the Tropics. J. Climate, 26, 5674–5681, https://doi.org/10.1175/JCLID-12-00731.1.CrossRefGoogle Scholar
  19. Lau, K. M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141–162, https://doi.org/10.1007/s00376-997-0016-y.CrossRefGoogle Scholar
  20. Lee, S. S., B. Wang, D. E. Waliser, J. M. Neena, and J.-Y. Lee, 2015: Predictability and prediction skill of the boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment. Climate Dyn., 45, 2123–2135, https://doi.org/10.1007/s00382-014-2461-5.CrossRefGoogle Scholar
  21. Li, C. F., and Coauthors, 2016: Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 11(9), 094002, https://doi.org/10.1088/1748-9326/11/9/094002.CrossRefGoogle Scholar
  22. Li, H., S. P. He, K. Fan, and H. J. Wang, 2018: Relationship between the onset date of the Meiyu and the South Asian anticyclone in April and the related mechanisms. Climate Dyn., https://doi.org/10.1007/s00382-018-4131-5.Google Scholar
  23. Li, K. P., W. D. Yu, T. Li, V. S. N. Murty, S. Khokiattiwong, T. R. Adi, and S. Budi, 2013: Structures and mechanisms of the first-branch northward-propagating intraseasonal oscillation over the tropical Indian Ocean. Climate Dyn., 40, 1707–1720, https://doi.org/10.1007/s00382-012-1492-z.CrossRefGoogle Scholar
  24. Li, R. C. Y., W. Zhou, and T. Li, 2014: Influences of the Pacific–Japan teleconnection pattern on synoptic-scale variability in the Western North Pacific. J. Climate, 27, 140–154, https://doi.org/10.1175/JCLI-D-13-00183.1.CrossRefGoogle Scholar
  25. Lim, Y., S. W. Son, and D. Kim, 2018: MJO prediction skill of the subseasonal-to-seasonal prediction models. J. Climate, 31, 4075–4094, https://doi.org/10.1175/JCLI-D-17-0545.1.CrossRefGoogle Scholar
  26. Liu, Y. M., J. C. L. Chan, J. Y. Mao, and G. X. Wu, 2002: The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon. Wea. Rev., 130, 2731–2744, https://doi.org/10.1175/1520-0493(2002)130<2731:TROBOB>2.0.CO;2.CrossRefGoogle Scholar
  27. Luo, M., and L. J. Lin, 2017: Objective determination of the onset and withdrawal of the South China Sea summer monsoon. Atmospheric Science Letters, 18, 276–282, https://doi.org/10.1002/asl.753.CrossRefGoogle Scholar
  28. Luo, M., Y. Leung, H. F. Graf, M. Herzog, and W. Zhang, 2016: Interannual variability of the onset of the South China Sea summer monsoon. International Journal of Climatology, 36, 550–562, https://doi.org/10.1002/joc.4364.CrossRefGoogle Scholar
  29. Luo, Y. L., H. Wang, R. H. Zhang, W. M. Qian, and Z. Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over south China and the Yangtze and Huai River basin. J. Climate, 26, 110–132, https://doi.org/10.1175/JCLI-D-12-00100.1.CrossRefGoogle Scholar
  30. MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396.CrossRefGoogle Scholar
  31. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.CrossRefGoogle Scholar
  32. Sampe, T., and S. P. Xie, 2010: Large-scale dynamics of the Meiyu–Baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113–134, https://doi.org/10.1175/2009JCLI3128.1.CrossRefGoogle Scholar
  33. Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 2514–2519, https://doi.org/10.1002/2014GL059637.CrossRefGoogle Scholar
  34. Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 1–11, https://doi.org/10.1002/qj.2910.CrossRefGoogle Scholar
  35. Shao, X., P. Huang, and R.-H. Huang, 2015: Role of the phase transition of intraseasonal oscillation on the South China Sea summer monsoon onset. Climate Dyn., 45, 125–137, https://doi.org/10.1007/s00382-014-2264-8.CrossRefGoogle Scholar
  36. Stuecker, M. F., A. Timmermann, F. F. Jin, S. McGregor, and H. L. Ren, 2013: A Combination mode of the annual cycle and the El Niño/Southern Oscillation. Nature Geoscience, 6, 540–544, https://doi.org/10.1038/ngeo1826.CrossRefGoogle Scholar
  37. Tao, S.-Y., and L.-X. Chen, 1987: Review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.Google Scholar
  38. Wang, B., F. Huang, Z. W. Wu, J. Yang, X. H. Fu, and K. Kikuchi, 2009: Multi-scale climate variability of the South China Sea monsoon: A review. Dyn. Atmos. Oceans, 47, 15–37, https://doi.org/10.1016/j.dynatmoce.2008.09.004.CrossRefGoogle Scholar
  39. Wang, B., LinHo, Y. S. Zhang, and M. M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. J. Climate, 17, 699–710, https://doi.org/10.1175/2932.1.CrossRefGoogle Scholar
  40. Wang, H., F. Liu, B. Wang, and T. Li, 2018: Effects of intraseasonal oscillation on South China Sea summer monsoon onset. Climate Dyn., 51, 2543–2558, https://doi.org/10.1007/s00382-017-4027-9.CrossRefGoogle Scholar
  41. Weisheimer, A., and T. N. Palmer, 2014: On the reliability of seasonal climate forecasts. Journal of the Royal Society Interface, 11, 20131162, https://doi.org/10.1098/rsif.2013.1162.CrossRefGoogle Scholar
  42. Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration, Geoscientific Model Development, 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015.CrossRefGoogle Scholar
  43. Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the Western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 2974–2986, https://doi.org/10.1175/2010JCLI3300.1.CrossRefGoogle Scholar
  44. Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Nature Scientific Reports, 2, 404, https://doi.org/10.1038/srep00404.CrossRefGoogle Scholar
  45. Wu, R. G., 2010: Subseasonal variability during the South China Sea summer monsoon onset. Climate Dyn., 34, 629–642, https:// doi.org/10.1007/s00382-009-0679-4.CrossRefGoogle Scholar
  46. Xie, S. P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432, https://doi.org/10.1007/s00376-015-5192-6.CrossRefGoogle Scholar
  47. Zhou, W., and J. C. L. Chan, 2007: ENSO and the South China Sea summer monsoon onset. International Journal of Climatology, 27, 157–167, https://doi.org/10.1002/joc.1380.CrossRefGoogle Scholar
  48. Zhu, Z. W., and J. H. He, 2013: The vortex over Bay of Bengal and its relationship with the outbreak of South China Sea summer monsoon. Journal of Tropical Meteorology, 29, 915–923. (in Chinese with English abstract)Google Scholar
  49. Zhu, Z. W., and T. Li, 2017: Empirical prediction of the onset dates of South China Sea summer monsoon. Climate Dyn., 48, 1633–1645, https://doi.org/10.1007/s00382-016-3164-x.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gill M. Martin
    • 1
    Email author
  • Amulya Chevuturi
    • 2
  • Ruth E. Comer
    • 1
  • Nick J. Dunstone
    • 1
  • Adam A. Scaife
    • 1
    • 3
  • Daquan Zhang
    • 4
  1. 1.Met Office Hadley Centre, Met OfficeExeterUK
  2. 2.NCAS-Climate and Department of MeteorologyUniversity of ReadingReadingUK
  3. 3.College of Engineering, Mathematics and Physical SciencesExeter UniversityExeterUK
  4. 4.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations