Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 3, pp 313–325 | Cite as

Tides and Turbulent Mixing in the North of Taiwan Island

  • Xiangzhou SongEmail author
  • Dexing Wu
  • Xiaohui Xie
Original Paper
  • 24 Downloads

Abstract

Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006. While the tidal currents on the shelf were dominated by the barotropic tide with the current ellipse stretched across the shelf, significant internal tides were observed on the slope. The depth-mean turbulent kinetic energy (TKE) dissipation rate on the shelf was 10−6 W kg−1, corresponding to a diapycnal diffusivity of 10−2 m2 s−1. The depth-mean TKE dissipation rate on the slope was 1×10−7 Wkg−1, with diapycnal diffusivity of 3.4×10−4 m2 s−1. The shear instability associated with internal tides largely contributed to the TKE dissipation rate on the slope from the surface to 150 m, while the enhanced turbulence on the shelf was dominated by tidal or residual current dissipations caused by friction in the thick bottom boundary layer (BBL). In the BBL, the Ekman currents associated with the northeastward Taiwan Warm Current were identified, showing a near-bottom velocity spiral, which agreed well with the analytical bottom Ekman solution.

Key words

microstructure observations turbulent mixing internal tides bottom boundary layer bottom Ekman spiral 

摘要

本文基于2006年夏季在台湾岛东北部海域从陆坡至陆架的湍流和水文断面观测,揭示了该海域的湍流量级及相关水文特征.研究发现:陆架上潮流以正压潮为主,在地形的作用下,潮汐椭圆被压缩,而在陆坡上以显著的内潮信号为主.在陆架上,深度平均的湍动能耗散率量级为 10-6 W kg-1, 对应的湍流混合率量级为10-2 m2 s-1.在陆坡上,深度平均的湍动能耗散率为10-7 W kg-1,平均湍流混合率为3.4×10-4 m2 s-1.陆坡上层垂向水文观测显示:由内潮引起的剪切不稳定极大的贡献于湍动能耗散率,而在陆架上增强的湍动能耗散率则主要由潮流和定常流在厚底边界层内的底摩擦作用下产生.

关键词

微尺度观测 湍流混合 内潮 底边界层 底Ekman螺旋 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Special thanks to the crew of the R/V Dong Fang Hong 2, particularly Professor Xianwen BAO (Ocean University of China) who chaired the cruise in the ECS. The survey was sponsored by the National Basic Research Program of China (Ministry of Science and Technology). The authors extend their thanks to Professor Martin VISBECK for the LADCP data processing. Dr. Jim PRICE was generous to share his bottom Ekman solution program during the MIT–WHOI joint program class in fall of 2009. Discussions with Professor Fangli QIAO, Xuejun XIONG, Zhiyu LIU and Dr. Guansuo WANG were helpful. Mr. Changsan XU helped improve the quality of the figures. The research was also granted by the National Natural Science Foundation of China (Grant Nos. 41306003 and 41430963), the Fundamental Research Funds for the Central Universities (Grant Nos. 0905–841313038, 1100–841262028 and 0905–201462003), the China Postdoctoral Science Foundation (Grant No. 2013M531647) and the Natural Science Foundation of Shandong (Grant No. BS2013HZ015). The GEBCO and AVISO data were downloaded from https://doi.org/www.gebco.net and https://doi.org/www.aviso.altimetry.fr, respectively. The authors appreciate the constructive comments and suggestions from the two anonymous reviewers, which greatly improved the quality of the manuscript.

References

  1. Baines, P. G., 1982: On internal tide generation models. Deep Sea Research Part A. Oceanographic Research Papers, 29(3), 307–338, https://doi.org/10.1016/0198-0149(82)90098-X.CrossRefGoogle Scholar
  2. Cushman-Roisin, B., and V. Malačič, 1997: Bottom Ekman pumping with stress-dependent eddy viscosity. J. Phys. Oceanogr., 27, 1967–1975, https://doi.org/10.1175/1520-0485(1997)027<1967:BEPWSD>2.0.CO;2.CrossRefGoogle Scholar
  3. Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788), 775–778, https://doi.org/10.1038/35015531.CrossRefGoogle Scholar
  4. Garrett, C., and E. Kunze, 2006: Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39(1), 57–87, https://doi.org/10.1146/annurev.fluid.39.050905.110227.CrossRefGoogle Scholar
  5. Gawarkiewicz, G., and Coauthors, 2011: Circulation and intrusions northeast of Taiwan: Chasing and predicting uncertainty in the cold dome. Oceanography, 24(4), 110–121, https://doi.org/10.5670/oceanog.2011.99.CrossRefGoogle Scholar
  6. Grant, W. D., and O. S. Madsen, 1986: The continental-shelf bottom boundary layer. Annual Review of Fluid Mechanics, 18, 265–305, https://doi.org/10.1146/annurev.fl.18.010186.001405.CrossRefGoogle Scholar
  7. Guo, X. Y., and T. Yanagi, 1998: Three-dimensional structure of tidal current in the East China Sea and the yellow sea. Journal of Oceanography, 54(6), 651–668, https://doi.org/10.1007/BF02823285.CrossRefGoogle Scholar
  8. Hsueh, Y., J. Wang, and C. S. Chern, 1992: The intrusion of the Kuroshio across the continental shelf northeast of Taiwan. J. Geophys. Res., 97(C9), 14 323–14 330, https://doi.org/10.1029/92JC01401.CrossRefGoogle Scholar
  9. Huang, R. X., 2010: Ocean Circulation: Wind-Driven and Thermohaline Processes. Cambridge University Press, 806 pp.Google Scholar
  10. Isobe, A., 2008: Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves. Journal of Oceanography, 64(4), 569–584, https://doi.org/10.1007/s10872-008-0048-7.CrossRefGoogle Scholar
  11. Kerry, C. G., B. S. Powell, and G. S. Carter, 2014: The impact of subtidal circulation on internal-tide-induced mixing in the Philippine sea. J. Phys. Oceanogr., 44, 3209–3224, https://doi.org/10.1175/JPO-D-13-0249.1.CrossRefGoogle Scholar
  12. Lee, J. H., I. Lozovatsky, S. T. Jang, C. J. Jang, C. S. Hong, and H. J. S. Fernando, 2006: Episodes of nonlinear internal waves in the northern East China Sea. Geophys. Res. Lett., 33(18), https://doi.org/10.1029/2006GL027136.Google Scholar
  13. Liang, W. D., T. Y. Tang, Y. J. Yang, M. T. Ko, and W. S. Chuang, 2003: Upper-ocean currents around Taiwan. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6–7), 1085–1105, https://doi.org/10.1016/S0967-0645(03)00011-0.CrossRefGoogle Scholar
  14. Liu, Z. Y., H. Wei, I. D. Lozovatsky, and H. J. S. Fernando, 2009: Late summer stratification, internal waves, and turbulence in the Yellow Sea. J. Mar. Syst., 77(4), 459–472, https://doi.org/10.1016/j.jmarsys.2008.11.001.CrossRefGoogle Scholar
  15. Lozovatsky, I., Z. Y. Liu, H. Wei, and H. J. S. Fernando, 2008: Tides and mixing in the northwestern East China Sea, part II: Near-bottom turbulence. Cont. Shelf Res., 28(2), 338–350, https://doi.org/10.1016/j.csr.2007.08.007.CrossRefGoogle Scholar
  16. Lozovatsky, I., Z. Y. Liu, H. Fernando, J. Armengol, and E. Roget, 2012: Shallow water tidal currents in close proximity to the seafloor and boundary-induced turbulence. Ocean Dynamics, 62(2), 177–191, https://doi.org/10.1007/s10236-011-0495-3.CrossRefGoogle Scholar
  17. Lozovatsky, I., J.-H. Lee, H. J. S. Fernando, S. K. Kang, and S. U. P. Jinadasa, 2015: Turbulence in the East China Sea: The summertime stratification. J. Geophys. Res., 120(3), 1856–1871, https://doi.org/10.1002/2014JC010596.CrossRefGoogle Scholar
  18. Matsuno, T., M. Shimizu, Y. Morii, H. Nishida, and Y. Takaki, 2005: Measurements of the turbulent energy dissipation rate around the shelf break in the East China Sea. Journal of Oceanography, 61(6), 1029–1037, https://doi.org/10.1007/s10872-006-0019-9.CrossRefGoogle Scholar
  19. Moum, J. N., D. R. Caldwell, J. D. Nash, and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 2113–2130, https://doi.org/10.1175/1520-0485(2002)032<2113:OOBMOT>2.0.CO;2.CrossRefGoogle Scholar
  20. Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45(12), 1977–2010, https://doi.org/10.1016/S0967-0637(98)00070-3.CrossRefGoogle Scholar
  21. Nasmyth, P. V., 1970: Oceanic turbulence. PhD dissertation, University of British Columbia, 69 pp.Google Scholar
  22. Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109(C4), https://doi.org/10.1029/2003JC001923.Google Scholar
  23. Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10(1), 83–89, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.CrossRefGoogle Scholar
  24. Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed., Springer-Verlag, 710 pp.CrossRefGoogle Scholar
  25. Perlin, A., J. N. Moum, J. M. Klymak, M. D. Levine, T. Boyd, and P. M. Kosro, 2005: A modified law-of-the-wall applied to oceanic bottom boundary layers. J. Geophys. Res., 110, C10S10, https://doi.org/10.1029/2004JC002310.Google Scholar
  26. Perlin, A., J. N. Moum, J. M. Klymak, M. D. Levine, T. Boyd, and P. M. Kosro, 2007: Organization of stratification, turbulence, and veering in bottom Ekman layers. J. Geophys. Res., 112, C05S90, https://doi.org/10.1029/2004JC002641.CrossRefGoogle Scholar
  27. Peters, H., and R. Bokhorst, 2000: Microstructure observations of turbulent mixing in a partially mixed estuary. Part I: Dissipation rate. J. Phys. Oceanogr., 30(6), 1232–1244, https://doi.org/10.1175/1520-0485(2000)030<1232:MOOTMI>2.0.CO;2.Google Scholar
  28. Qiu, B., and N. Imasato, 1990: A numerical study on the formation of the Kuroshio counter current and the Kuroshio branch current in the East China Sea. Cont. Shelf Res., 10(2), 165–184, https://doi.org/10.1016/0278-4343(90)90028-K.CrossRefGoogle Scholar
  29. Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian ridge. Science, 301(5631), 355–357, https://doi.org/10.1126/science.1085837.CrossRefGoogle Scholar
  30. Shih, L. H., J. R. Koseff, G. N. Ivey, and J. H. Ferziger, 2005: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech., 525, 193–214, https://doi.org/10.1017/S0022112004002587.CrossRefGoogle Scholar
  31. Su, J., 1998: Circulation dynamics of the China seas: North of 18°N. The Sea, A. R. Robinson and K. H. Brink, Eds., John Wiley & Sons Inc., 13–19.Google Scholar
  32. Su, J. L., and W. Wang, 1987: On the sources of the Taiwan warm current from the South China Sea. Chinese Journal of Oceanology and Limnology, 5(4), 299–308, https://doi.org/10.1007/BF02843812.CrossRefGoogle Scholar
  33. Su, J. L., Y. Q. Pan, and X. S. Liang, 1994: Kuroshio intrusion and Taiwan warm current. Oceanology of China Seas, D. Zhou et al., Eds., Springer, 59–70.Google Scholar
  34. Tang, T. Y., Y. Hsueh, Y. J. Yang, and J. C. Ma, 1999: Continental slope flow northeast of Taiwan. J. Phys. Oceanogr., 29(6), 1353–1362, https://doi.org/10.1175/1520-0485(1999)029<1353:CSFNOT>2.0.CO;2.CrossRefGoogle Scholar
  35. Trowbridge, J. H., W. R. Geyer, M. M. Bowen, and A. J. Williams III, 1999: Near-bottom turbulence measurements in a partially mixed estuary: Turbulent energy balance, velocity structure, and along-channel momentum balance. J. Phys. Oceanogr., 29(12), 3056–3072, https://doi.org/10.1175/1520-0485(1999)029<3056:NBTMIA>2.0.CO;2.CrossRefGoogle Scholar
  36. Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19(5), 794–807, https://doi.org/10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2.CrossRefGoogle Scholar
  37. Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44(7), 1854–1872, https://doi.org/10.1175/JPO-D-13-0104.1.CrossRefGoogle Scholar
  38. Wolk, F., H. Yamazaki, L. Seuront, and R. G. Lueck, 2002: A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Oceanic Technol., 19(5), 780–793, https://doi.org/10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2.CrossRefGoogle Scholar
  39. Wu, C. R., Y. C. Hsin, T. L. Chiang, Y. F. Lin, and I. F. Tsui, 2014: Seasonal and interannual changes of the Kuroshio intrusion onto the East China Sea shelf. J. Geophys. Res., 119(8), 5039–5051, https://doi.org/10.1002/2013JC009748.CrossRefGoogle Scholar
  40. Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36, 281–314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.CrossRefGoogle Scholar
  41. Xia, C. S., F. L. Qiao, Y. Z. Yang, J. Ma, and Y. L. Yuan, 2006: Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res., 111, C11S03, https://doi.org/10.1029/2005JC003218.CrossRefGoogle Scholar
  42. Xie, X. H., G. Y. Chen, X. D. Shang, and W. D. Fang, 2008: Evolution of the semidiurnal (M2) internal tide on the continental slope of the northern South China Sea. Geophys. Res. Lett., 35(13), https://doi.org/10.1029/2008GL034179.Google Scholar
  43. Yang, J. Y., 2007: An oceanic current against the wind: How does Taiwan Island steer warm water into the East China Sea? J. Phys. Oceanogr., 37(10), 2563–2569, https://doi.org/10.1175/JPO3134.1.CrossRefGoogle Scholar
  44. Yang, J. Y., D. X. Wu, and X. P. Lin, 2008: On the dynamics of the South China Sea warm current. J. Geophys. Res., 113(C8), https://doi.org/10.1029/2007JC004427.Google Scholar
  45. Yoshikawa, Y., T. Endoh, T. Matsuno, T. Wagawa, E. Tsutsumi, H. Yoshimura, and Y. Morii, 2010: Turbulent bottom Ekman boundary layer measured over a continental shelf. Geophys. Res. Lett., 37(15), L15605, https://doi.org/10.1029/2010GL044156.CrossRefGoogle Scholar
  46. Zhong, Y. S., 2009: The turbulent mixing and double diffusion in Yellow Sea and East China Sea and their seasonal variation. M. S. thesis, Ocean University of China. (in Chinese with English abstract)Google Scholar
  47. Zhou, L., J. W. Tian, and X. Q. Zhang, 2005: Observation of small-scale processes over shelf break in the East China Sea. Chinese Science Bulletin, 50(24), 2885–2890, https://doi.org/10.1360/982005-269.Google Scholar
  48. Zhu, X. M., and G. M. Liu, 2012: Numerical study on the tidal currents, tidal energy fluxes and dissipation in the China seas. Oceanologia et Limnologia Sinica, 43(3), 669–677. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina
  2. 2.National Marine Environmental Forecasting CenterState Oceanic AdministrationBeijingChina
  3. 3.Horn Point LaboratoryUniversity of Maryland Center for Environmental ScienceCambridgeU.S.A.

Personalised recommendations