Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 10, pp 1217–1230 | Cite as

Value-added Impact of Geostationary Hyperspectral Infrared Sounders on Local Severe Storm Forecasts—via a Quick Regional OSSE

  • Zhenglong Li
  • Jun Li
  • Pei Wang
  • Agnes Lim
  • Jinlong Li
  • Timothy J. Schmit
  • Robert Atlas
  • Sid-Ahmed Boukabara
  • Ross N. Hoffman
Original Paper

Abstract

Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction (NWP) models to reliably predict high-impact weather events such as local severe storms (LSSs). High spectral resolution or hyperspectral infrared (HIR) sounders from geostationary orbit (GEO) provide an unprecedented source of near time-continuous, three-dimensional information on the dynamic and thermodynamic atmospheric fields—an important benefit for nowcasting and NWP-based forecasting. In order to demonstrate the value of GEO HIR sounder radiances on LSS forecasts, a quick regional OSSE (Observing System Simulation Experiment) framework has been developed, including high-resolution nature run generation, synthetic observation simulation and validation, and impact study on LSS forecasts. Results show that, on top of the existing LEO (low earth orbit) sounders, a GEO HIR sounder may provide value-added impact [a reduction of 3.56% in normalized root-mean-square difference (RMSD)] on LSS forecasts due to large spatial coverage and high temporal resolution, even though the data are assimilated every 6 h with a thinning of 60 km. Additionally, more frequent assimilations and smaller thinning distances allow more observations to be assimilated, and may further increase the positive impact from a GEO HIR sounder. On the other hand, with denser and more frequent observations assimilated, it becomes more difficult to handle the spatial error correlation in observations and gravity waves due to the limitations of current assimilation and forecast systems (such as a static background error covariance). The peak reduction of 4.6% in normalized RMSD is found when observations are assimilated every 3 h with a thinning distance of 30 km.

Key words

OSSE hyperspectral sounder high-impact weather 

摘 要

具有高时空间分辨率的精确的大气温度和湿度信息, 是利用区域数值天气预报模式, 准确预报局地强风暴天气的两个关键参数. 来自地球静止轨道的高光谱分辨率红外探测仪, 能提供大气的动力和热力的近乎连续的三维信息. 这些前所未有的关于大气垂直结构的信息, 对临近预报和基于数值天气模式的预报具有重要意义. 为了展示地球静止轨道高光谱红外探测仪对局地强风暴预报的价值, 我们开发了一个快速的区域观测系统模拟试验框架, 包括高分辨率的自然大气场景(nature run)的生成, 观测的模拟和验证, 以及对局地强风暴预报的影响研究. 结果表明, 与现有的低地球轨道大气探测仪的相比, 地球静止轨道高光谱红外探测仪对区域模式具有更大的空间覆盖率和更高的时间分辨率. 在目前的每6小时一次, 稀疏距离为60公里的业务同化设置下, 能够改进局地强风暴预报, 减少整体分析和预报误差3.56%. 此外, 更频繁的同化和更小的数据稀疏距离能使更多的观测数据被同化, 从而进一步增加地球静止轨道高光谱红外探测仪的正影响效果.

关键字

观测系统模拟试验 高光谱 探测仪 高影响天气 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is partly supported by the NESDIS OPPA OSSE program (Grant No. NA15NES4320001). The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official NOAA or U. S. government position, policy, or decision. Thanks to the Joint Center for Satellite Data Assimilation for providing the “S4” supercomputer [Supercomputer for Satellite Simulations and Data Assimilation Boukabara et al. (2016b)], physically located at SSEC, University of Wisconsin-Madison, as the main computational resource for this research study.

References

  1. Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation (gtSpecial Issuelt-Data assimilation in meteology and oceanography: Theory and practice). J. Meteor. Soc. Japan, 75, 111–130,  https://doi.org/10.2151/jmsj1965.75.1B111.CrossRefGoogle Scholar
  2. Atlas, R., L. Bucci, B. Annane, R. Hoffman, and S. Murillo, 2015: Observing system simulation experiments to assess the potential impact of new observing systems on hurricane forecasting. Marine Technology Society Journal, 49, 140–148.CrossRefGoogle Scholar
  3. Auligné, T., F. Rabier, L. Lavanant, and M. Dahoui, 2003: First results of the assimilation of AIRS data in Météo-France Numerical Weather Prediction model. Proc. 13th International TOVS Study Conf., Adele, Canada.Google Scholar
  4. Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495–518,  https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.CrossRefGoogle Scholar
  5. Bessho, K., and Coauthors, 2016: An introduction to himawari-8/9 -Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteor. Soc. Japan, 94, 151–183.CrossRefGoogle Scholar
  6. Boukabara, S., and Coauthors, 2016a: Community global observing system simulation experiment (OSSE) package (CGOP): Description and usage. J. Atmos. Oceanic Technol., 33, 1759–1777,  https://doi.org/10.1175/JTECH-D-16-0012.1.CrossRefGoogle Scholar
  7. Boukabara, S., and Coauthors, 2016b: S4: An O2R/R2O infrastructure for optimizing satellite data utilization in NOAA numerical modeling systems: A step toward bridging the gap between research and operations. Bull. Amer. Meteor. Soc., 97, 2359–2378,  https://doi.org/10.1175/BAMS-D-14-00188.1.CrossRefGoogle Scholar
  8. Boukabara, S., and Coauthors, 2018: Community global observing system simulation experiment (OSSE) package CGOP: Perfect observations simulation validation. J. Atmos. Oceanic Technol., 35, 207–226,  https://doi.org/10.1175/JTECH-D-17-0077.1.CrossRefGoogle Scholar
  9. Cardinali, C., 2009: Monitoring the observation impact on the short -range forecast. Quart. J. Roy. Meteor. Soc., 135, 239–250,  https://doi.org/10.1002/qj.366.CrossRefGoogle Scholar
  10. Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911–926,  https://doi.org/10.1175/BAMS-87-7-911.CrossRefGoogle Scholar
  11. Chen, Y., Y. Han, P. Van Delst, and F. Z. Weng, 2010: On water vapor Jacobian in fast radiative transfer model. J. Geophys. Res., 115,  https://doi.org/10.1029/2009JD013379.
  12. Chen, Y., Y. Han, and F. Z. Weng, 2012: Comparison of two transmittance algorithms in the community radiative transfer model: Application to AVHRR. J. Geophys. Res., 117,  https://doi.org/10.1029/2011JD016656.
  13. Cintineo, R. M., J. A. Otkin, T. A. Jones, S. Koch, and D. J. Stensrud, 2016: Assimilation of synthetic GOES-R ABI infrared brightness temperatures and WSR-88D radar observations in a high-resolution OSSE. Mon. Wea. Rev., 144(9), 3159–3180,  https://doi.org/10.1175/MWR-D-15-0366.1.CrossRefGoogle Scholar
  14. Collard, A. D., and A. P. McNally, 2009: The assimilation of infrared atmospheric sounding interferometer radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 135, 1044–1058,  https://doi.org/10.1002/qj.410.CrossRefGoogle Scholar
  15. Ferretti, R., and C. Faccani, 2005: Data assimilation of highdensity observations. II: Impact on the forecast of the precipitation for the MAP/SOP IOP2b. Quart. J. Roy. Meteor. Soc., 131, 43–61,  https://doi.org/10.1256/qj.03.56B.Google Scholar
  16. Gambacorta, A., and Coauthors, 2014: An experiment using high spectral resolution CrIS measurements for atmospheric trace gases: Carbon monoxide retrieval impact study. IEEE Geoscience and Remote Sensing Letters, 11, 1639–1643,  https://doi.org/10.1109/LGRS.2014.2303641.CrossRefGoogle Scholar
  17. Gelaro, R., and Coauthors, 2015: Evaluation of the 7-km GEOS-5 nature run. NASA/TM-2014-104606/VOL36, NASA Goddard Space Flight Center, 285 pp.Google Scholar
  18. Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14(2), 155–167,  https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.CrossRefGoogle Scholar
  19. Hannon, S. E., L. L. Strow, and W. W. McMillan, 1996: Atmospheric infrared fast transmittance models: A comparison of two approaches. Proc. SPIE Volume 2830, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Denver, CO, United States, SPIE, 94–105,  https://doi.org/10.1117/12.256106.CrossRefGoogle Scholar
  20. Hilton, F., N. C. Atkinson, S. J. English, and J. R. Eyre, 2009: Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments. Quart. J. Roy. Meteor. Soc., 135, 495–505,  https://doi.org/10.1002/qj.379.CrossRefGoogle Scholar
  21. Hilton, F., and Coauthors, 2012: Hyperspectral Earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93, 347–370,  https://doi.org/10.1175/BAMS-D-11-00027.1.CrossRefGoogle Scholar
  22. Hoffman, R. N., and R. Atlas, 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 1601–1616,  https://doi.org/10.1175/BAMS-D-15-00200.1.CrossRefGoogle Scholar
  23. Honda, T., and Coauthors, 2018a: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213–229,  https://doi.org/10.1175/MWR-D-16-0357.1.CrossRefGoogle Scholar
  24. Honda, T., S. Kotsuki, G. Y. Lien, Y. Maejima, K. Okamoto, and T. Miyoshi, 2018b: Assimilation of Himawari-8 allsky radiances every 10 minutes: Impact on precipitation and flood risk prediction. J. Geophys. Res., 123, 965–976,  https://doi.org/10.1002/2017JD027096.Google Scholar
  25. Huang, X. Y., M. Chen, W. Wang, J.-W. Kim, B. Skamarock, and T. Henderson, 2007: Development of Digital Filter Initialization for WRF and its implementation at IUM. Preprints: 8th Annual WRF User’s Workshop, NCAR, Boulder, CO, NCAR.Google Scholar
  26. Jin, X., J. Li, T. J. Schmit, J. L. Li, M. D. Goldberg, and J. J. Gurka, 2008: Retrieving clear-sky atmospheric parameters from SEVIRI and ABI infrared radiances. J. Geophys. Res., 113, D15310,  https://doi.org/10.1029/2008JD010040.CrossRefGoogle Scholar
  27. Jones, T. A., S. Koch, and Z. L. Li, 2017: Assimilating synthetic hyperspectral sounder temperature and humidity retrievals to improve severe weather forecasts. Atmospheric Research, 186, 9–25,  https://doi.org/10.1016/j.atmosres.2016.11.004.CrossRefGoogle Scholar
  28. Joo, S., J. Eyre, and R. Marriott, 2013: The impact of Metop and other satellite data within the Met Office global NWP system using an Adjoint-based sensitivity method. Mon. Wea. Rev., 141, 3331–3342,  https://doi.org/10.1175/MWR-D-12-00232.1.CrossRefGoogle Scholar
  29. Keyser, D., 2018: PREPBUFR processing at NCEP. Tech. rep., National Centers for Environmental Prediction. Available online at https://doi.org/www.emc.ncep.noaa.gov/mmb/dataprocessing/prepbufr.doc/document.htm.Google Scholar
  30. Le Marshall, J., and Coauthors, 2005: Impact of atmospheric infrared sounder observations on weather forecasts. Eos, 86(11), 109–116,  https://doi.org/10.1029/2005EO110002.CrossRefGoogle Scholar
  31. Le Marshall, J., and Coauthors, 2006a: Improving global analysis and forecasting with AIRS. Bull. Amer. Meteor. Soc., 87, 891–895,  https://doi.org/10.1175/BAMS-87-7-891.CrossRefGoogle Scholar
  32. Le Marshall, J., J. Jung, T. Zapotocny, J. Derber, R. Treadon, S. Lord, M. Goldberg, and W. Wolf, 2006b: The application of AIRS radiances in numerical weather prediction. Aust. Meteor. Mag., 55, 213–217.Google Scholar
  33. Li, J., W. W. Wolf, W. P. Menzel, W. J. Zhang, H.-L. Huang, and T. H. Achtor, 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39, 1248–1268,  https://doi.org/10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2.CrossRefGoogle Scholar
  34. Li, Z. L., J. Li, W. P. Menzel, J. P. Nelson III, T. J. Schmit, E. Weisz, and S. A. Ackerman, 2009: Forecasting and nowcasting improvement in cloudy regions with high temporal GOES Sounder infrared radiance measurements. J. Geophys. Res., 114, D09216,  https://doi.org/10.1029/2008JD010596.Google Scholar
  35. Li, J., J. L. Li, J. Otkin, T. J. Schmit, and C.-Y., Liu, 2011: Warning information in a preconvection environment from the geostationary advanced infrared sounding system—a simulation study using the IHOP Case. Journal of Applied Meteorology and Climatology, 50, 776–783,  https://doi.org/10.1175/2010JAMC2441.1.CrossRefGoogle Scholar
  36. Li, J., P. Wang, H. Han, J. L. Li, and J. Zheng, 2016: On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models. Journal of Meteorological Research, 30, 169–182,  https://doi.org/10.1007/s13351-016-5114-2.CrossRefGoogle Scholar
  37. Li, J., Z. L. Li, P. Wang, T. J. Schmit, W. G. Bai, and R. Atlas, 2017: An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy-sky conditions. J. Geophys. Res., 122, 7600–7613,  https://doi.org/10.1002/2016JD026273.Google Scholar
  38. Lim, A., and Coauthors, 2017: Impact analysis of LEO hyperspectral sensor IFOV size on the next-generation high-resolution NWP model forecast performance. Proc. 27th International TOVS Study Conf., Darmstadt, Germany, NOAA.Google Scholar
  39. Liu, Z.-Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 1367–1386,  https://doi.org/10.1256/003590002320373337.CrossRefGoogle Scholar
  40. Liu, Z. Q., and F. Rabier, 2003: The potential of high-density observations for numerical weather prediction: A study with simulated observations. Quart. J. Roy. Meteor. Soc., 129, 3013–3035,  https://doi.org/10.1256/qj.02.170.CrossRefGoogle Scholar
  41. Lynch, P., and X. Y. Huang, 1992: Initialization of the HIRLAM Model using a Digital Filter. Mon. Wea. Rev., 120, 1019–1034,  https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.CrossRefGoogle Scholar
  42. Ma, Z. Z., E. S. Maddy, B. L. Zhang, T. Zhu, and S. A. Boukabara, 2017: Impact assessment of himawari-8 AHI data assimilation in NCEP GDAS/GFS with GSI. J. Atmos. Oceanic Technol., 34, 797–815,  https://doi.org/10.1175/JTECH-D-16-0136.1.CrossRefGoogle Scholar
  43. Mallick, S., D. Dutta, and K.-H. Min, 2017: Quality assessment and forecast sensitivity of global remote sensing observations. Adv. Atmos. Sci., 34(3), 371–382,  https://doi.org/10.1007/s00376-016-6109-8.CrossRefGoogle Scholar
  44. McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935–957,  https://doi.org/10.1256/qj.04.171.CrossRefGoogle Scholar
  45. McNally, A. P., M. Bonavita, and J.-N. Thépaut, 2014: The role of satellite data in the forecasting of hurricane sandy. Mon. Wea. Rev., 142, 634–646,  https://doi.org/10.1175/MWR-D-13-00170.1.CrossRefGoogle Scholar
  46. Menzel, W. P., F. C. Holt, T. J. Schmit, R. M. Aune, A. J. Schreiner, G. S. Wade, and D. G. Gray, 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc., 79, 2059–2077,  https://doi.org/10.1175/1520-0477(1998)079<2059:AOGSTW>2.0.CO;2.CrossRefGoogle Scholar
  47. Menzel, W. P., T. J. Schmit, P. Zhang, and J. Li, 2018: Satellitebased atmospheric infrared sounder development and applications. Bull. Amer. Meteor. Soc., 99, 583–603,  https://doi.org/10.1175/BAMS-D-16-0293.1.CrossRefGoogle Scholar
  48. Migliorini, S., 2012: On the equivalence between radiance and retrieval assimilation. Mon. Wea. Rev., 140, 258–265,  https://doi.org/10.1175/MWR-D-10-05047.1.CrossRefGoogle Scholar
  49. Peckham, S. E., T. G. Smirnova, S. G. Benjamin, J. M. Brown, and J. S. Kenyon, 2016: Implementation of a digital filter initialization in the WRF model and its application in the Rapid Refresh. Mon. Wea. Rev., 144, 99–106,  https://doi.org/10.1175/MWR-D-15-0219.1.CrossRefGoogle Scholar
  50. Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079–1096,  https://doi.org/10.1175/BAMS-86-8-1079.CrossRefGoogle Scholar
  51. Schmit, T. J., J. Li, S. A. Ackerman, and J. J. Gurka, 2009: Highspectral-and high-temporal-resolution infrared measurements from geostationary orbit. J. Atmos. Oceanic Technol., 26, 2273–2292,  https://doi.org/10.1175/2009JTECHA1248.1.CrossRefGoogle Scholar
  52. Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681–698,  https://doi.org/10.1175/BAMS-D-15-00230.1.CrossRefGoogle Scholar
  53. Seemann, S. W., J. Li, W. P. Menzel, and L. E. Gumley, 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42, 1072–1091,  https://doi.org/10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2.CrossRefGoogle Scholar
  54. Seemann, S. W., E. E. Borbas, R. O. Knuteson, G. R. Stephenson, and H.-L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. Journal of Applied Meteorology and Climatology, 47, 108–123,  https://doi.org/10.1175/2007JAMC1590.1.CrossRefGoogle Scholar
  55. Skamarock, W. C., and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488–494,  https://doi.org/10.1175/2008MWR2583.1.CrossRefGoogle Scholar
  56. Strow, L. L., S. E. Hannon, S. De Souza-Machado, H. Motteler, and D. Tobin, 2003: An overview of the AIRS radiative transfer model. IEEE Transactions on Geoscience and Remote Sensing, 41, 303–313,  https://doi.org/10.1109/TGRS.2002.808244.CrossRefGoogle Scholar
  57. Wang, H. L., X.-Y. Huang, and Y. S. Chen, 2013: An observing system simulation experiment for the impact of MTG Candidate Infrared Sounding mission on regional forecasts: system development and preliminary results. ISRN Meteorology, 2013, 971501,  https://doi.org/10.1155/2013/971501.CrossRefGoogle Scholar
  58. Wang, P., J. Li, J. L. Li, Z. L. Li, T. J. Schmit, and W. G. Bai, 2014: Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP. Geophys. Res. Lett., 41, 1773–1780,  https://doi.org/10.1002/2013GL059067.CrossRefGoogle Scholar
  59. Wang, P., and Coauthors, 2015: Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP. J. Geophys. Res., 120, 5469–5484,  https://doi.org/10.1002/2014JD022976.Google Scholar
  60. Wang, P., J. Li, Z. L. Li, A. H. N. Lim, J. L. Li, T. J. Schmit, and M. D. Goldberg, 2017: The impact of cross-track infrared sounder (CrIS) cloud -cleared radiances on hurricane Joaquin (2015) and Matthew (2016) Forecasts. J. Geophys. Res., 122, 13201–13218,  https://doi.org/10.1002/2017JD027515.Google Scholar
  61. Wei, H. L., P. Yang, J. Li, B. A. Baum, H.-L. Huang, S. Platnick, Y. X. Hu, and L. Strow, 2004: Retrieval of semitransparent ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements. IEEE Transactions on Geoscience and Remote Sensing, 42, 2254–2267,  https://doi.org/10.1109/TGRS.2004.833780.CrossRefGoogle Scholar
  62. Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun 4. Bull. Amer. Meteor. Soc., 1637–1658,  https://doi.org/10.1175/BAMS-D-16-0065.1.Google Scholar
  63. Zhang, S. X., Z. X. Pu, D. J. Posselt, and R. Atlas, 2017: Impact of CYGNSS ocean surface wind speeds on numerical simulations of a hurricane in observing system simulation experiments. J. Atmos. Oceanic Technol., 34, 375–383,  https://doi.org/10.1175/JTECH-D-16-0144.1.CrossRefGoogle Scholar
  64. Zhu, Y. Q., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140(682), 1479–1492,  https://doi.org/10.1002/qj.2233.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhenglong Li
    • 1
  • Jun Li
    • 1
  • Pei Wang
    • 1
  • Agnes Lim
    • 1
  • Jinlong Li
    • 1
  • Timothy J. Schmit
    • 2
  • Robert Atlas
    • 3
  • Sid-Ahmed Boukabara
    • 4
  • Ross N. Hoffman
    • 3
  1. 1.Cooperative Institute for Meteorological Satellite StudiesUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Center for Satellite Applications and ResearchNOAAMadisonUSA
  3. 3.Atlantic Oceanographic and Meteorological LaboratoryOAR/NOAAMiamiUSA
  4. 4.Center for Satellite Applications and ResearchNOAACollege ParkUSA

Personalised recommendations