Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 12, pp 1491–1504 | Cite as

Estimating the Predictability Limit of Tropical Cyclone Tracks over the Western North Pacific Using Observational Data

  • Quanjia Zhong
  • Lifeng Zhang
  • Jianping Li
  • Ruiqiang Ding
  • Jie Feng
Original Paper

Abstract

In this study, the nonlinear local Lyapunov exponent (NLLE) approach was used to quantitatively determine the predictability limit of tropical cyclone (TC) tracks based on observed TC track data obtained from the Joint Typhoon Warning Center. The results show that the predictability limit of all TC tracks over the whole western North Pacific (WNP) basin is about 102 h, and the average lifetime of all TC tracks is about 174 h. The predictability limits of the TC tracks for short-, medium-, and long-lived TCs are approximately 72 h, 120 h, and 132 h, respectively. The predictability limit of the TC tracks depends on the TC genesis location, lifetime, and intensity, and further analysis indicated that these three metrics are closely related. The more intense and longer-lived TCs tend to be generated on the eastern side of the WNP (EWNP), whereas the weaker and shorter-lived TCs tend to form in the west of the WNP (WWNP) and the South China Sea (SCS). The relatively stronger and longer-lived TCs, which are generated mainly in the EWNP, have a longer travel time before they curve northeastwards and hence tend to be more predictable than the relatively weaker and shorter-lived TCs that form in the WWNP region and SCS. Furthermore, the results show that the predictability limit of the TC tracks obtained from the best-track data may be underestimated due to the relatively short observational records currently available. Further work is needed, employing a numerical model to assess the predictability of TC tracks.

Key words

predictability tropical cyclone tracks nonlinear local Lyapunov exponent 

摘 要

非线性局部 Lyapunov 指数 (NLLE) 方法为定量估计大气可预报性提供了一个有效的方法. 在本文研究中, 主要采用美国联合台风警报中心(JTWC)热带气旋最佳路径数据集, 然后利用 NLLE 方法定量研究了西北太平洋热带气旋路径的可预报性. 结果表明: 西北太平洋热带气旋路径的总体平均可预报期限为 ∼108 小时(约 4.5 天). 热带气旋可预报期限的空间分布可以发现, 西北太平洋热带气旋路径的可预报期限大约在 48–120 小时, 且其可预报期限空间分布从东南向西北逐渐降低. 进一步研究发现, 热带气旋的可预报性随源地, 持续时间及强度的变化而有一定的差异. 南海生成的热带气旋可预报期限最小, 随着源地自西向东可预报期限逐渐增大, 西北太平洋东部源地的可预报期限最大; 短生命史的热带气旋可预报期限最小, 随着生命史的增长, 可预报期限逐渐增大; 热带低压的可预报期限最小, 热带风暴和台风的可预报期限大小相当, 强台风的可预报期限最大, 即强度越大, 其可预报期限可能越大. 上述研究结果有助于深入认识和了解热带气旋路径可预报性及其可能影响因子, 对进一步完善目前的热带气旋数值预报模式和提高热带气旋的预报水平有重要科学意义.

关键词

非线性局部Lyapunov指数(NLLE) 热带气旋 可预报性 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberson, S. D., 1998: Five-day tropical cyclone track forecasts in the North Atlantic basin. Wea. Forecasting, 13, 1005–1015,  https://doi.org/10.1175/1520-0434(1998)013<1005:FDTCTF>2.0.CO;2.CrossRefGoogle Scholar
  2. Aberson, S. D., and C. R. Sampson, 2003: On the predictability of tropical cyclone tracks in the Northwest Pacific basin. Mon. Wea. Rev., 131, 1491–1497,  https://doi.org/10.1175/1520-0493(2003)131<1491:OTPOTC>2.0.CO;2.CrossRefGoogle Scholar
  3. Aiyyer, A., 2015: Recurving western North Pacific tropical cyclones and midlatitude predictability. Geophys. Res. Lett., 42, 7799–7807,  https://doi.org/10.1002/2015GL065082.CrossRefGoogle Scholar
  4. Arpe, K., and E. Klinker, 1986: Systematic errors of the ECMWF operational forecasting model in mid-latitudes. Quart. J. Roy. Meteor. Soc., 112, 181–202,  https://doi.org/10.1002/qj.49711247111.CrossRefGoogle Scholar
  5. Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 2046–2061,  https://doi.org/10.1175/1520-0493(1993)121<2046:IITCTA>2.0.CO;2.CrossRefGoogle Scholar
  6. Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006,  https://doi.org/10.1175/JCLI3457.1.CrossRefGoogle Scholar
  7. Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819–4834,  https://doi.org/10.1175/JCLI4282.1.CrossRefGoogle Scholar
  8. Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143–152,  https://doi.org/10.1007/s00703-005-0126-y.CrossRefGoogle Scholar
  9. Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354–1374,  https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.CrossRefGoogle Scholar
  10. Chen, B. H., J. P. Li, and R. Q. Ding, 2006: Nonlinear local Lyapunov exponent and atmospheric predictability research. Science in China Series D: Earth Sciences, 49, 1111–1120,  https://doi.org/10.1007/s11430-006-1111-0.CrossRefGoogle Scholar
  11. Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus A, 39, 474–491,  https://doi.org/10.3402/tellusa.v39i5.11774.CrossRefGoogle Scholar
  12. Ding, R. Q., and J. P. Li, 2007: Nonlinear finite-time Lyapunov exponent and predictability. Physics Letters A, 364, 396–400,  https://doi.org/10.1016/j.physleta.2006.11.094.CrossRefGoogle Scholar
  13. Ding, R. Q., and J. P. Li, 2009a: Decadal and seasonal dependence of North Pacific sea surface temperature persistence. J. Geophys. Res., 114,  https://doi.org/10.1029/2008JD010723.Google Scholar
  14. Ding, R. Q., and J. P. Li, 2009b: Long-Term trend and decadal variability of persistence of daily 500-mb geopotential height anomalies during boreal winter. Mon. Wea. Rev., 137, 3519–3534,  https://doi.org/10.1175/2009MWR2841.1.CrossRefGoogle Scholar
  15. Ding, R. Q., and J. P. Li, 2012: Relationships between the limit of predictability and initial error in the uncoupled and coupled lorenz models. Adv. Atmos. Sci., 29, 1078–1088,  https://doi.org/10.1007/s00376-012-1207-8.CrossRefGoogle Scholar
  16. Ding, R. Q., G. L. Feng, S. D. Liu, S. K. Liu, S. X. Huang, and Z. T. Fu, 2007: Nonlinear atmospheric and climate dynamics in China (2003–2006): A review. Adv. Atmos. Sci., 24, 1077–1085,  https://doi.org/10.1007/s00376-007-1077-7.CrossRefGoogle Scholar
  17. Ding, R. Q., J. P. Li, and K. H. Seo, 2010: Predictability of the madden-julian oscillation estimated using observational data. Mon. Wea. Rev., 138, 1004–1013,  https://doi.org/10.1175/2009MWR3082.1.CrossRefGoogle Scholar
  18. Ding, R. Q., J. P. Li, F. Zheng, J. Feng, and D. Q. Liu, 2016: Estimating the limit of decadal-scale climate predictability using observational data. Climate Dyn., 46, 1563–1580,  https://doi.org/10.1007/s00382-015-2662-6.CrossRefGoogle Scholar
  19. Elsberry, R. L., 2007: Advances in tropical cyclone motion prediction and recommendations for the future. WMO Bull., 56, 131–134.Google Scholar
  20. Elsberry, R. L., 2014: Advances in research and forecasting of tropical cyclones from 1963–2013. Asia-Pacific Journal of Atmospheric Sciences, 50, 3–16,  https://doi.org/10.1007/s13143-014-0001-1.CrossRefGoogle Scholar
  21. Elsberry, R. L., and J. E. Peak, 1986: An evaluation of tropical cyclone forecast aids based on cross-track and along-track components. Mon. Wea. Rev., 114, 147–155,  https://doi.org/10.1175/1520-0493(1986)114<0147:AEOTCF>2.0.CO;2.CrossRefGoogle Scholar
  22. Elsberry, R. L., M. S. Jordan, and F. Vitart, 2010: Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model. Asia-Pacific Journal of Atmospheric Sciences, 46, 135–153,  https://doi.org/10.1007/s13143-010-0013-4.CrossRefGoogle Scholar
  23. Fiorino, M., 2009: Record-setting performance of the ECMWF IFS in medium-range tropical cyclone track prediction. ECMWF Newsletter, 118, 20–27.Google Scholar
  24. Fraedrich, K., 1987: Estimating weather and climate predictability on attractors. J. Atmos. Sci., 44, 722–728,  https://doi.org/10.1175/1520-0469(1987)044<0722:EWACPO>2.0.CO;2.CrossRefGoogle Scholar
  25. Fraedrich, K., and L. M. Leslie, 1989: Estimates of cyclone track predictability. I: Tropical cyclones in the Australian region. Quart. J. Roy. Meteor. Soc., 115, 79–92,  https://doi.org/10.1002/qj.49711548505.Google Scholar
  26. Goerss, J. S., 2000: Tropical cyclone track forecasts using an ensemble of dynamical models. Mon. Wea. Rev., 128, 1187–1193,  https://doi.org/10.1175/1520-0493(2000)128<1187:Tctfua>2.0.Co;2.CrossRefGoogle Scholar
  27. Goerss, J. S., 2009: Impact of satellite observations on the tropical cyclone track forecasts of the navy operational global atmospheric prediction system. Mon. Wea. Rev., 137, 41–50,  https://doi.org/10.1175/2008MWR2601.1.CrossRefGoogle Scholar
  28. Grassberger, P., and I. Procaccia, 1984: Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D: Nonlinear Phenomena, 13, 34–54,  https://doi.org/10.1016/0167-2789(84)90269-0.CrossRefGoogle Scholar
  29. Heckley, W. A., 1985: Systematic errors of the ECMWF operational forecasting model in tropical regions. Quart. J. Roy. Meteor. Soc., 111, 709–738,  https://doi.org/10.1002/qj.49711146904.CrossRefGoogle Scholar
  30. Kazantsev, E., 1999: Local Lyapunov exponents of the quasigeostrophic ocean dynamics. Applied Mathematics and Computation, 104, 217–257,  https://doi.org/10.1016/S0096-3003(98)10078-4.CrossRefGoogle Scholar
  31. Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363–376,  https://doi.org/10.1175/2009BAMS2755.1.CrossRefGoogle Scholar
  32. Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nature Geoscience, 3, 157–163,  https://doi.org/10.1038/ngeo779.CrossRefGoogle Scholar
  33. Lacarra, J. F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus A, 40, 81–95,  https://doi.org/10.1111/j.1600-0870.1988.tb00408.x.CrossRefGoogle Scholar
  34. Leslie, L. M., R. F. Abbey Jr., and G. J. Holland, 1998: Tropical cyclone track predictability. Meteor. Atmos. Phys., 65, 223–231,  https://doi.org/10.1007/BF01030790.CrossRefGoogle Scholar
  35. Li, J. P., and R. Q. Ding, 2011: Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon. Wea. Rev., 139, 3265–3283,  https://doi.org/10.1175/Mwr-D-10-05020.1.CrossRefGoogle Scholar
  36. Li, J. P., and R. Q. Ding, 2013: Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int. J. Climatol., 33, 1936–1947,  https://doi.org/10.1002/joc.3562.CrossRefGoogle Scholar
  37. Li, W. J., J. P. Liu, L. J. Chen, P. Q. Zhang, and H. L. Ren, 2014: Spatiotemporal distribution and decadal change of the monthly temperature predictability limit in China. Chinese Science Bulletin, 59, 4864–4872,  https://doi.org/10.1007/s11434-014-0502-4.CrossRefGoogle Scholar
  38. Li, W. W., Z. Wang, and M. S. Peng, 2016: Evaluating tropical cyclone forecasts from the NCEP global ensemble forecasting system (GEFS) reforecast version 2.Wea. Forecasting, 31, 895–916,  https://doi.org/10.1175/WAF-D-15-0176.1.CrossRefGoogle Scholar
  39. Liu, J. P., W. J. Li, L. J. Chen, J. Q. Zuo, and P. Q. Zhang, 2016: Estimation of the monthly precipitation predictability limit in China using the nonlinear local lyapunov exponent. Journal of Meteorological Research, 30, 93–102,  https://doi.org/10.1007/s13351-015-5049-z.CrossRefGoogle Scholar
  40. Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141,  https://doi.org/10.1175/1520-0469(1963)020<0130:Dnf>2.0.Co;2.CrossRefGoogle Scholar
  41. Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636–646,  https://doi.org/10.1175/1520-0469(1969)26<636:Aparbn>2.0.Co;2.CrossRefGoogle Scholar
  42. Mu, M., 2000: Nonlinear singular vectors and nonlinear singular values. Science in China Series D: Earth Sciences, 43, 375–385,  https://doi.org/10.1007/BF02959448.CrossRefGoogle Scholar
  43. Munsell, E. B., 2016: Dynamics and predictability of tropical cyclones evaluated through convection-permitting ensemble analyses and forecasts with airborne radar and sounding observations. PhD dissertation, The Pennsylvania State University.Google Scholar
  44. Munsell, E. B., and F. Q. Zhang, 2014: Prediction and uncertainty of Hurricane Sandy (2012) explored through a realtime cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations. Journal of Advances in Modeling Earth Systems, 6, 38–58,  https://doi.org/10.1002/2013MS000297.CrossRefGoogle Scholar
  45. Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: projections by a 20-kmmesh global atmospheric model. J. Climate, 24, 1154–1169,  https://doi.org/10.1175/2010JCLI3723.1.CrossRefGoogle Scholar
  46. Nicolis, C., and G. Nicolis, 1984: Is there a climatic attractor? Nature, 311, 529–532,  https://doi.org/10.1038/311529a0.CrossRefGoogle Scholar
  47. Peng, S. Q., and Coauthors, 2015: A Real-time regional forecasting system established for the South China Sea and its performance in the track forecasts of tropical cyclones during 2011–13. Wea. Forecasting, 30, 471–485,  https://doi.org/10.1175/Waf-D-14-00070.1.CrossRefGoogle Scholar
  48. Plu, M., 2011: A New Assessment of the predictability of tropical cyclone tracks. Mon. Wea. Rev., 139, 3600–3608,  https://doi.org/10.1175/2011MWR3627.1.CrossRefGoogle Scholar
  49. Poterjoy, J., and F. Q. Zhang, 2014: Predictability and genesis of hurricane karl (2010) examined through the EnKF assimilation of field observations collected during PREDICT. J. Atmos. Sci., 71, 1260–1275,  https://doi.org/10.1175/JAS-D-13-0291.1.CrossRefGoogle Scholar
  50. Qi, L. B., H. Yu, and P. Y. Chen, 2014: Selective ensemble-mean technique for tropical cyclone track forecast by using ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 140, 805–813,  https://doi.org/10.1002/qj.2196.CrossRefGoogle Scholar
  51. Qin, X. H., W. S. Duan, and M. Mu, 2013: Conditions under which CNOP sensitivity is valid for tropical cyclone adaptive observations. Quart. J. Roy. Meteor. Soc., 139, 1544–1554,  https://doi.org/10.1002/qj.2109.CrossRefGoogle Scholar
  52. Sampson, C. R., J. S. Goerss, and H. C. Weber, 2006: Operational performance of a new barotropic model (WBAR) in the western North Pacific basin. Wea. Forecasting, 21, 656–662,  https://doi.org/10.1175/WAF939.1.CrossRefGoogle Scholar
  53. Shi, Z., and R. Q. Ding, 2012: Estimating the predictability of the Quasi-Biweekly Oscillation using the nonlinear local Lyapunov exponent approach. Atmospheric and Oceanic Science Letters, 5, 389–392,  https://doi.org/10.1080/16742834.2012.11447023.CrossRefGoogle Scholar
  54. Thanh, C., T. T. Tien, and K. Q. Chanh, 2016: Application of breeding ensemble to tropical cyclone track forecasts using the Regional Atmospheric Modeling System (RAMS) model. Applied Mathematical Modelling, 40, 8309–8325,  https://doi.org/10.1016/j.apm.2016.04.010.CrossRefGoogle Scholar
  55. Thompson, P. D., 1957: Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9, 275–295,  https://doi.org/10.1111/j.2153-3490.1957.tb01885.x.CrossRefGoogle Scholar
  56. Walsh, K. J., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change, 7, 65–89,  https://doi.org/10.1002/wcc.371.Google Scholar
  57. Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658,  https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.CrossRefGoogle Scholar
  58. Wang, G. H., J. L. Su, Y. H. Ding, and D. K. Chen, 2007: Tropical cyclone genesis over the South China Sea. J. Mar. Syst., 68, 318–326,  https://doi.org/10.1016/j.jmarsys.2006.12.002.CrossRefGoogle Scholar
  59. Wong, M. L. M., and J. C. L. Chan, 2006: Tropical cyclone motion in response to land surface friction. J. Atmos. Sci., 63, 1324–1337,  https://doi.org/10.1175/JAS3683.1.CrossRefGoogle Scholar
  60. Wu, L., Z. P. Wen, R. H. Huang, and R. G. Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140–150,  https://doi.org/10.1175/MWR-D-11-00078.1.CrossRefGoogle Scholar
  61. Yan, Y. F., Y. Q. Qi, and W. Zhou, 2012: Variability of tropical cyclone occurrence date in the South China Sea and its relationship with SST warming. Dyn. Atmos. Oceans, 55–56, 45–59,  https://doi.org/10.1016/j.dynatmoce.2012.05.001.CrossRefGoogle Scholar
  62. Yoden, S., and M. Nomura, 1993: Finite-time Lyapunov stability analysis and its application to atmospheric predictability. J. Atmos. Sci., 50, 1531–1543,  https://doi.org/10.1175/1520-0469(1993)050<1531:FTLSAA>2.0.CO;2.CrossRefGoogle Scholar
  63. Zhang, W. J., Y. J. Zhang, D. Zheng, and X. J. Zhou, 2012: Lightning distribution and eyewall outbreaks in tropical cyclones during landfall. Mon. Wea. Rev., 140, 3573–3586,  https://doi.org/10.1175/MWR-D-11-00347.1.CrossRefGoogle Scholar
  64. Zhang, Z., and T. N. Krishnamurti, 1997: Ensemble forecasting of hurricane tracks. Bull. Amer. Meteor. Soc., 78, 2785–2796,  https://doi.org/10.1175/1520-0477(1997)078<2785:Efoht>2.0.Co;2.CrossRefGoogle Scholar
  65. Ziehmann, C., L. A. Smith, and J. Kurths, 2000: Localized Lyapunov exponents and the prediction of predictability. Physics Letters A, 271, 237–251,  https://doi.org/10.1016/S0375-9601(00)00336-4.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Quanjia Zhong
    • 1
    • 2
    • 3
  • Lifeng Zhang
    • 2
  • Jianping Li
    • 4
    • 5
  • Ruiqiang Ding
    • 1
    • 4
  • Jie Feng
    • 6
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.College of Meteorology and OceanographyNational University of Defense TechnologyNanjingChina
  3. 3.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  5. 5.College of Global Change and Earth System SciencesBeijing Normal UniversityBeijingChina
  6. 6.School of MeteorologyUniversity of OklahomaNormanUSA

Personalised recommendations