Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 3, pp 326–338 | Cite as

Evaluation of Summer Monsoon Clouds over the Tibetan Plateau Simulated in the ACCESS Model Using Satellite Products

  • Liang Hu
  • Zhian Sun
  • Difei DengEmail author
  • Greg Roff
Original Paper

Abstract

Cloud distribution characteristics over the Tibetan Plateau in the summer monsoon period simulated by the Australian Community Climate and Earth System Simulator (ACCESS) model are evaluated using COSP [the CFMIP (Cloud Feedback Model Intercomparison Project) Observation Simulator Package]. The results show that the ACCESS model simulates less cumulus cloud at atmospheric middle levels when compared with observations from CALIPSO and CloudSat, but more ice cloud at high levels and drizzle drops at low levels. The model also has seasonal biases after the onset of the summer monsoon in May. While observations show that the prevalent high cloud at 9–10 km in spring shifts downward to 7–9 km, the modeled maximum cloud fractions move upward to 12–15 km. The reason for this model deficiency is investigated by comparing model dynamical and thermodynamical fields with those of ERA-Interim. It is found that the lifting effect of the Tibetan Plateau in the ACCESS model is stronger than in ERA-Interim, which means that the vertical velocity in the ACCESS model is stronger and more water vapor is transported to the upper levels of the atmosphere, resulting in more high-level ice clouds and less middle-level cumulus cloud over the Tibetan Plateau. The modeled radiation fields and precipitation are also evaluated against the relevant satellite observations.

Key words

Tibetan Plateau cloud fraction ACCESS model COSP 

摘要

利用COSP 2006-2012年的卫星雷达观测资料,本文对ACCESS 模式在青藏高原地区夏季云垂直结构的表现进行了详细评估.结果表明,和观测相比,模式对青藏高原上空的典型积云模拟偏少,而对高云和低云模拟明显偏多.卫星观测结果显示,夏季风爆发后,春季高原上空的高云逐渐向中低云转变,而ACCESS模拟的高云则主要向更高的高空发展,和卫星观测存在很大偏差.和ERA interim资料进行对比发现,ACCESS模式对青藏高原南坡的地形抬升作用描述偏强,季风爆发后,偏强的地形坡面抬升作用造成高原东南侧强对流发展过多过强,使得夏季青藏高原地区高云明显偏多,对流降水也比观测明显偏多.

关键词

青藏高原 云量 ACCESS模式 COSP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Drs. Gary DIETACHMAYER, Hongyan ZHU, and Tony HIRST are thanked for internally reviewing this manuscript. This study was funded by the Third Scientific Experiment of the Tibetan Plateau (Grant No. GYHY201406001), the National Natural Science Foundation of China (Grant Nos. 41575045, 41205030, and 41175046), and the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2017Z013). The authors would like to thank TRMM TSDIS for providing the TRMM 3B42 datasets (ftp://disc2.nascom.nasa.gov/ftp/data/s4pa/TRMM L3/TRMM 3B42/). The CMAP precipitation data were provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, via their website at https://doi.org/www.esrl.noaa.gov/psd/.

References

  1. Abel, S. J., and I. A. Boutle, 2012: An improved representation of the raindrop size distribution for single-moment microphysics schemes. Quart. J. Roy. Meteor. Soc., 138, 2151–2162, https://doi.org/10.1002/qj.1949.CrossRefGoogle Scholar
  2. Adler, R. F., G. J. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the global precipitation climatology project (GPCP). Journal of Applied Meteorology and Climatology, 51, 84–99, https://doi.org/10.1175/JAMCD-11-052.1.CrossRefGoogle Scholar
  3. Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 1071–1092, https://doi.org/10.1175/JCLI4035.1.CrossRefGoogle Scholar
  4. Bi, D. H., and Coauthors, 2013: The ACCESS coupled model: description, control climate and evaluation. Australian Meteorological and Oceanographic Journal, 63, 41–64.CrossRefGoogle Scholar
  5. Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1.CrossRefGoogle Scholar
  6. Bodas-Salcedo, A., M. J. Webb, M. E. Brooks, M. A. Ringer, K. D. Williams, S. F. Milton, and D. R. Wilson, 2008: Evaluating cloud systems in the met office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113, D00A13, https://doi.org/10.1029/2007JD009620.CrossRefGoogle Scholar
  7. Chepfer, H., S. Bony, D. Winker, G. Cesana, J. L. Dufresne, P. Minnis, C. J. Stubenrauch, and S. Zeng, 2010: The GCMoriented CALIPSO cloud product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, https://doi.org/10.1029/2009JD012251.CrossRefGoogle Scholar
  8. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  9. Duan, A. M., J. Hu, and Z. X. Xiao, 2013: The Tibetan Plateau summer monsoon in the CMIP5 simulations. J. Climate, 26, 7747–7766, https://doi.org/10.1175/JCLI-D-12-00685.1.CrossRefGoogle Scholar
  10. Fallah, B., U. Cubasch, K. Prömmel, and S. Sodoudi, 2016: A numerical model study on the behaviour of Asian summer monsoon and AMOC due to orographic forcing of Tibetan Plateau. Climate Dyn., 47, 1485–1495, https://doi.org/10.1007/s00382-015-2914-5.CrossRefGoogle Scholar
  11. Franklin, C. N., Z. A. Sun, D. H. Bi, M. Dix, H. L. Yan, and A. Bodas-Salcedo, 2013a: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Global, seasonal, and regional cloud properties. J. Geophys. Res., 118, 732–748, https://doi.org/10.1029/2012JD018469.CrossRefGoogle Scholar
  12. Franklin, C. N., Z. A. Sun, D. H. Bi, M. Dix, H. L. Yan, and A. Bodas-Salcedo, 2013b: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Regime-sorted tropical cloud properties. J. Geophys. Res., 118, 6663–6679, https://doi.org/10.1002/jgrd.50496.Google Scholar
  13. Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 2799–2812, https://doi.org/10.1175/1520-0469(1997)054<2799:MSPITI>2.0.CO;2.CrossRefGoogle Scholar
  14. Fu, Y. F., and G. S. Liu, 2007: Possible misidentification of rain type by TRMM PR over Tibetan Plateau. Journal of Applied Meteorology and Climatology, 46, 667–672, https://doi.org/10.1175/JAM2484.1.CrossRefGoogle Scholar
  15. Gao, Y. X., S. K. Jiang, and Y. G. Zhang, 1982: Climatology of the Tibetan Plateau. Science Press. Beijing, 300 pp. (in Chinese)Google Scholar
  16. Hu, L., D. F. Deng, X. D. Xu, and P. Zhao, 2017: The regional differences of Tibetan convective systems in boreal summer. J. Geophys. Res., 122, 7289–7299, https://doi.org/10.1002/2017JD026681.Google Scholar
  17. Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM multi-satellite precipitation analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, https://doi.org/10.1007/978-90-481-2915-7 1.CrossRefGoogle Scholar
  18. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 446–727.Google Scholar
  19. Jayakumar, A., J. Sethunadh, R. Rakhi, T. Arulalan, S. Mohandas, G. R. Iyengar, and E. N. Rajagopal, 2017: Behavior of predicted convective clouds and precipitation in the high-resolution Unified Model over the Indian summer monsoon region. Earth and Space Science, 4, 303–313, https://doi.org/10.1002/2016EA000242.CrossRefGoogle Scholar
  20. Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801–1820, https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.CrossRefGoogle Scholar
  21. Liu, Y., B. J. Hoskins, M. Blackburn, 2007: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan, 85, 1–19.CrossRefGoogle Scholar
  22. Luo, S., Z. A. Sun, X. G. Zheng, L. Rikus, and C. Franklin, 2016: Evaluation of ACCESS model cloud properties over the Southern Ocean area using multiple-satellite products. Quart. J. Roy. Meteor. Soc., 142, 160–171, https://doi.org/10.1002/qj.2641.CrossRefGoogle Scholar
  23. Luo, Y. L., R. H. Zhang, W. M. Qian, Z. Z. Luo, and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164–2177, https://doi.org/10.1175/2010JCLI4032.1.CrossRefGoogle Scholar
  24. Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using Cloudsat - An earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519–533, https://doi.org/10.1175/2007JTECHA1006.1.CrossRefGoogle Scholar
  25. Maussion, F., D. Scherer, R. Finkelnburg, J. Richters, W. Yang, and T. Yao, 2011: WRF simulation of a precipitation event over the Tibetan Plateau, China — An assessment using remote sensing and ground observations. Hydrology and Earth System Sciences, 15, 1795–1817, https://doi.org/10.5194/hess-15-1795-2011.CrossRefGoogle Scholar
  26. Pinker, R. T., and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194–211, https://doi.org/10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2.CrossRefGoogle Scholar
  27. Pokharel, B., and G. Vali, 2011: Evaluation of collocated measurements of radar reflectivity and particle sizes in ice clouds. Journal of Applied Meteorology and Climatology, 50, 2104–2119, https://doi.org/10.1175/JAMC-D-10-05010.1.CrossRefGoogle Scholar
  28. Stein, T. H. M., D. J. Parker, R. J. Hogan, C. E. Birch, C. E. Holloway, G. M. S. Lister, J. H. Marsham, and S. J. Woolnough, 2015: The representation of the West African monsoon vertical cloud structure in the Met Office Unified Model: An evaluation with CloudSat. Quart. J. Roy. Meteor. Soc., 141, 3312–3324, https://doi.org/10.1002/qj.2614.CrossRefGoogle Scholar
  29. Walters, D., and Coauthors, 2017: The met office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geoscientific Model Development, 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017.CrossRefGoogle Scholar
  30. Wang, C. H., H. X. Shi, H. L. Hu, Y. Wang, and B. K. Xi, 2015: Properties of cloud and precipitation over the Tibetan Plateau. Adv. Atmos. Sci., 32, 1504–1516, https://doi.org/10.1007/s00376-015-4254-0.CrossRefGoogle Scholar
  31. Webb, M., C., Senior, S. Bony, et al. 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn, 17, 905–922, https://doi.org/10.1007/s003820100.CrossRefGoogle Scholar
  32. Winker, D. M., and Coauthors, 2010: The calipso mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 1211–1230, https://doi.org/10.1175/2010BAMS3009.1.CrossRefGoogle Scholar
  33. Wu, G. X., and Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over south Asia and the South China Sea. Mon. Wea. Rev., 126, 913–927, https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.CrossRefGoogle Scholar
  34. Wu, G. X., and Coauthors, 2015: Tibetan Plateau climate dynamics: Recent research progress and outlook. National Science Review, 2, 100–116, https://doi.org/10.1093/nsr/nwu045.CrossRefGoogle Scholar
  35. Xie, P. P., and P. A. Arkin, 1997: Global Precipitation: A 17-Year monthly analysis based on gauge observations, satel lite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.CrossRefGoogle Scholar
  36. Yan, Y. F., Y. M. Liu, and J. H. Lu, 2016: Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res., 121, 5864–5877, https://doi.org/10.1002/2015JD024591.Google Scholar
  37. Zhang, T. P., P. W. Stackhouse, S. K. Gupta, S. J. Cox, and J. C. Mikovitz, 2015: The validation of the GEWEX SRB surface longwave flux data products using BSRN measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 150, 134–147, https://doi.org/10.1016/j.jqsrt.2014.07.013CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Science to ServicesAustralian Bureau of MeteorologyMelbourneAustralia
  3. 3.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.School of Physical, Environmental and Mathematical SciencesThe University of New South WalesCanberraAustralia

Personalised recommendations