Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 4, pp 431–450 | Cite as

Numerical Study of Boundary Layer Structure and Rainfall after Landfall of Typhoon Fitow (2013): Sensitivity to Planetary Boundary Layer Parameterization

  • Meiying Dong
  • Chunxiao JiEmail author
  • Feng Chen
  • Yuqing Wang
Original Paper
  • 14 Downloads

Abstract

The boundary layer structure and related heavy rainfall of Typhoon Fitow (2013), which made landfall in Zhejiang Province, China, are studied using the Advanced Research version of the Weather Research and Forecasting model, with a focus on the sensitivity of the simulation to the planetary boundary layer parameterization. Two groups of experiments—one with the same surface layer scheme and including the Yonsei University (YSU), Mellor–Yamada–Nakanishi–Niino Level 2.5, and Bougeault and Lacarrere schemes; and the other with different surface layer schemes and including the Mellor–Yamada–Janjić and Quasi-Normal Scale Elimination schemes—are investigated. For the convenience of comparative analysis, the simulation with the YSU scheme is chosen as the control run because this scheme successfully reproduces the track, intensity and rainfall as a whole. The maximum deviations in the peak tangential and peak radial winds may account for 11% and 33% of those produced in the control run, respectively. Further diagnosis indicates that the vertical diffusivity is much larger in the first group, resulting in weaker vertical shear of the tangential and radial winds in the boundary layer and a deeper inflow layer therein. The precipitation discrepancies are related to the simulated track deflection and the differences in the simulated low-level convergent flow among all tests. Furthermore, the first group more efficiently transfers moisture and energy and produces a stronger ascending motion than the second, contributing to a deeper moist layer, stronger convection and greater precipitation.

Key words

planetary boundary layer parameterization landfalling typhoon boundary layer structure rainfall 

摘 要

针对大气行星边界层物理过程影响登陆台风结构和强降水的敏感性问题, 本文以2013年造成中国浙江最强日降水的Fitow台风为例, 利用高分辨率WRF模式和谱动力张弛逼近技术, 设计了两组敏感性试验: 第一组试验采用了相同的表面层方案, 包括采用YSU, MYNN2和BouLac边界层方案的3个试验; 第二组试验采用了不同的表面层方案, 包括采用MYJ和QNSE边界层方案的2个试验, 探讨了大气行星边界层参数化对登陆台风结构和强降水的影响效应和可能过程. 结果表明: (1)采用YSU边界层方案较成功再现了Fitow台风的路径, 强度和极端强降水, 路径和强度平均误差为19 km和2.8 m s−1, 逐6h降水的相对误差多小于10%, 为方便文中对比分析该试验被选为控制试验. (2)台风边界层结构对于不同边界层参数化方案比较敏感. 各试验之间最大切向风和径向风的偏差可分别占控制试验最大切向风和切向风的11%和33%, 这种差异主要与水汽和能量的湍流垂直混合有关. 第一组试验中垂直交换效率明显高于第二组试验, 从而导致了第一组试验中台风边界层结构具有较弱的切向风, 径向风垂直切变和更深厚入流. (3)不同边界层参数化方案对登陆后台风强降水影响明显. 这一方面与不同边界层参数化引起引导气流不同导致台风路径出现偏折有关, 另一方面也与台风和周围环境相互作用导致低层辐合线位置差异相联系. 不同边界层参数化过程的反馈使得暴雨区在低层风场, 辐合以及垂直运动产生差异. 总体上, 相比于第二组试验, 第一组试验水汽和能量的湍流垂直交换更加充分, 上升运动更强, 更有助于深厚湿层, 强对流和台风极端强降水的发生.

关键词

行星边界层参数化 登陆台风 边界层结构 降水 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to Dr. Chunxi ZHANG, Miss Hao FU, and Dr. Yu-Jun JIANG for their assistance with the numerical experiments and helpful discussions. This study was supported by the National Natural Science Foundation of China (Grant No. 41375056), the National Basic Research and Development Project (973 program) of China under contract no. 2015CB452805, the National Key Technology R&D Program (Grant No. 2012BAC03), the Social Welfare Technology Development Projects of the Science and Technology Department of Zhejiang Province (Grant No. 2014C33056), and the Key Project of Science and Technology Plan of Zhejiang Meteorological Provincial Bureau (2017ZD04). The data for the initial and lateral boundary conditions of the model were obtained from the NOAA National Operation Model Archive (https://doi.org/nomads.ncdc.noaa.gov/data/gfsanl/), the best-track data for Typhoon Fitow (2013) were obtained from the Shanghai Typhoon Institute of the China Meteorological Administration (tcdata.typhoon.org.cn), and the AWS precipitation data were obtained from the Zhejiang Meteorology Bureau.

References

  1. Black, P. G., and Coauthors, 2007: Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357–374,  https://doi.org/10.1175/BAMS-88-3-357.CrossRefGoogle Scholar
  2. Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 1872–1890,  https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.CrossRefGoogle Scholar
  3. Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961,  https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.CrossRefGoogle Scholar
  4. Cha, D.-H., and Y. Q. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Mon. Wea. Rev., 141, 964–986,  https://doi.org/10.1175/MWR-D-12-00077.1.CrossRefGoogle Scholar
  5. Chen, L.-S., and Y.-H. Ding, 1979: An Introduction to Typhoons in the Western Pacific. Science Press, Beijing, China, 179–181. (in Chinese)Google Scholar
  6. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585,  https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.CrossRefGoogle Scholar
  7. Davis, C., and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 1100–1124,  https://doi.org/10.1175/1520-0493(2002)130<1100:NSOTGO>2.0.CO;2.CrossRefGoogle Scholar
  8. Deng, G., Y.-S. Zhou, and J.-T. Li, 2005: The experiments of the boundary layer schemes on simulated typhoon Part I. The effect on the structure of typhoon. Chinese Journal of Atmospheric Sciences, 29(3), 813–824,  https://doi.org/10.3878/j.issn.1006-9895.2005.03.09. (in Chinese)Google Scholar
  9. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model. J. Atmos. Sci., 46, 3077–3107,  https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  10. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605,  https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.Google Scholar
  11. Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976,  https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.CrossRefGoogle Scholar
  12. Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014–1026,  https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.CrossRefGoogle Scholar
  13. Foster, R. C., 2009: Boundary-layer similarity under an axisymmetric, gradient wind vortex. Bound.-Layer Meteor., 131, 321–344,  https://doi.org/10.1007/s10546-009-9379-1.CrossRefGoogle Scholar
  14. Gopalakrishnan, S. G., F. D. Marks Jr., J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high resolution HWRF system. J. Atmos. Sci., 70, 524–541,  https://doi.org/10.1175/JAS-D-11-0340.1.CrossRefGoogle Scholar
  15. Hill, K. A., and G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the weather research and forecasting model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137: 745–765,  https://doi.org/10.1175/2008MWR2220.1.CrossRefGoogle Scholar
  16. Holland, G. J., 1984: Tropical cyclone motion. A comparison of theory and observation. J. Atmos. Sci., 41, 68–75,  https://doi.org/10.1175/1520-0469(1984)041<0068:TCMACO>2.0.CO;2.CrossRefGoogle Scholar
  17. Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339,  https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.CrossRefGoogle Scholar
  18. Hong, S.-Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132: 103–120,  https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.CrossRefGoogle Scholar
  19. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341,  https://doi.org/10.1175/MWR3199.1.CrossRefGoogle Scholar
  20. Hu, X.-M., J. W. Nielsen-Gammon, and F.-Q. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. Journal of Applied Meteorology and Climatology, 49, 1831–1844,  https://doi.org/10.1175/2010JAMC2432.1.CrossRefGoogle Scholar
  21. Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado, Atmos. Res., 97, 462–477,  https://doi.org/10.1016/j.atmosres.2010.04.010.Google Scholar
  22. Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945,  https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.CrossRefGoogle Scholar
  23. Janjić, Z. I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models”. J. Atmos. Sci., 57, 3686,  https://doi.org/10.1175/1520-0469(2000)057<3686:CODAEO>2.0.CO;2.CrossRefGoogle Scholar
  24. Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Of?ce Note #437, 61 pp.Google Scholar
  25. Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898–918,  https://doi.org/10.1175/MWR-D-11-00056.1.CrossRefGoogle Scholar
  26. Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140(5), 1427–1445,  https://doi.org/10.1175/MWR-D-11-00217.1.CrossRefGoogle Scholar
  27. Li, X. L., and Z.-X. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136(12): 4819–4838,  https://doi.org/10.1175/2008MWR2366.1.CrossRefGoogle Scholar
  28. Liu, J. J., F. M. Zhang, and Z. X. Pu, 2017: Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes. Adv. Atmos. Sci., 34(4), 482–496,  https://doi.org/10.1007/s00376-016-6209-5.CrossRefGoogle Scholar
  29. Malkus, J. S., 1958: On the structure and maintenance of the mature hurricane eye. J. Meteor., 15, 337–349,  https://doi.org/10.1175/1520-0469(1958)015<0337:OTSAMO>2.0.CO;2.CrossRefGoogle Scholar
  30. Malkus, J. S, and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1–20,  https://doi.org/10.1111/j.2153-3490.1960.tb01279.x.CrossRefGoogle Scholar
  31. Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875,  https://doi.org/10.1029/RG020i004p00851.CrossRefGoogle Scholar
  32. Ming, J., and J. A. Zhang, 2016: Effects of surface flux parameterization on the numerically simulated intensity and structure of typhoon morakot (2009). Adv. Atmos. Sci., 33(1), 58–72.CrossRefGoogle Scholar
  33. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmo spheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682,  https://doi.org/10.1029/97JD00237.CrossRefGoogle Scholar
  34. Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 1–31,  https://doi.org/10.1023/B:BOUN.0000020164.04146.98.CrossRefGoogle Scholar
  35. Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40,  https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.CrossRefGoogle Scholar
  36. Rosenthal, S. L., 1971: The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions, and domain size. Mon. Wea. Rev., 99, 767–777,  https://doi.org/10.1175/1520-0493(1971)099<0767:TROATC>2.3.CO;2.CrossRefGoogle Scholar
  37. Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542–561,  https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.CrossRefGoogle Scholar
  38. Shin, H. H., and S. Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139(2), 261–281,  https://doi.org/10.1007/s10546-010-9583-z.CrossRefGoogle Scholar
  39. Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475 + STR, Natl. Cent. for Atmos. Res., Boulder, Colo,  https://doi.org/10.5065/D68S4MVH.Google Scholar
  40. Smith, R. K, and G. L. Thomsen, 2010: Dependence of tropicalcyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 1671–1685,  https://doi.org/10.1002/qj.687.CrossRefGoogle Scholar
  41. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 515–520,  https://doi.org/10.1007/978-94-009-3027-8.CrossRefGoogle Scholar
  42. Sukoriansky, S., and B. Galperin, 2008: A Quasi-Normal Scale Elimination (QNSE) theory of turbulent flows with stable stratification and its application in weather forecast systems. Proc. 6th IASME/WSEAS International Conf. on Heat Transfer, Thermal Engineering and Environment (THE’08), Rhodes, Greece, WSEAS Press, 376–380.Google Scholar
  43. Sukoriansky, S., B. Galperin, and V. Perov, 2005: ‘Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice’. Bound.-Layer Meteor., 117, 231–257,  https://doi.org/10.1007/s10546-004-6848-4.CrossRefGoogle Scholar
  44. Wang, C.-X., 2013: Experiments of influence of planetary boundary layer parameterization on Muifa typhoon prediction. Advances in Earth Science, 28(2), 197–208. (in Chinese)Google Scholar
  45. Wang, H., Y. Q. Wang, and H.-M. Xu, 2013: Improving simulation of a tropical cyclone using dynamical initialization and largescale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteorologica Sinica, 27, 455–475,  https://doi.org/10.1007/s13351-013-0418-y.CrossRefGoogle Scholar
  46. Wang, Y. Q., 2012: Recent research progress on tropical cyclone structure and intensity. Tropical Cyclone Research and Review, 1, 254–275,  https://doi.org/10.6057/2012TCRR02.05.Google Scholar
  47. Wang, Y. Q., J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 2481–2500,  https://doi.org/10.1175/1520-0493(2001)129<2481:TEOSSE>2.0.CO;2.CrossRefGoogle Scholar
  48. Xu, H.-Y., Y. Zhu, R. Liu, H.-F. Shen, D.-H. Wang, and G.-Q. Zhai, 2013: Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River. Chinese Journal of Atmospheric Sciences, 37(1), 149–159,  https://doi.org/10.3878/j.issn.1006-9895.2012.12021. (in Chinese)Google Scholar
  49. Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287–301,  https://doi.org/10.1175/JTECH-D-12-00119.1.CrossRefGoogle Scholar
  50. Yu, Z., Y. Wang and H. Xu, 2015: Observed rainfall asymmetry in tropical cyclones making landfall over China. J. Appl. Meteor. Climatol., 54(1), 117–136.CrossRefGoogle Scholar
  51. Zhang, C.-X., Y. Q. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513,  https://doi.org/10.1175/MWR-D-10-05091.1.CrossRefGoogle Scholar
  52. Zhang, D.-L., and W. Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157–169,  https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.CrossRefGoogle Scholar
  53. Zhang, F. M., and Z. X. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74(6), 1879–1905,  https://doi.org/10.1175/JAS-D-16-0214.1.CrossRefGoogle Scholar
  54. Zhang, F. M., Z. X. Pu, and C. H. Wang, 2017: Effects of boundary layer vertical mixing on the evolution of hurricanes over land. Mon. Wea. Rev., 145(6), 2343–2361,  https://doi.org/10.1175/MWR-D-16-0421.1.CrossRefGoogle Scholar
  55. Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 3136–3155,  https://doi.org/10.1175/MWR-D-14-00339.1.CrossRefGoogle Scholar
  56. Zhu, P., K. Menelaou, and Z. D. Zhu, 2014: Impact of subgridscale vertical turbulent mixing on eyewall asymmetric structures and mesovortices of hurricanes. Quart. J. Roy. Meteor. Soc., 140, 416–438,  https://doi.org/10.1002/qj.2147.CrossRefGoogle Scholar
  57. Zhu, Q.-G., J. H. Lin, S.-W. Shou, and D.-S. Tang. 2000: Principles and Methods of Synoptic Meteorology. China Meteorological Press, Beijing, China, 320–321.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Meiying Dong
    • 1
    • 2
  • Chunxiao Ji
    • 1
    Email author
  • Feng Chen
    • 1
  • Yuqing Wang
    • 2
  1. 1.Zhejiang Institute of Meteorological SciencesHangzhouChina
  2. 2.International Pacific Research Center, and Department of Meteorology, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations