Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 9, pp 1205–1215 | Cite as

Influence of Low-frequency Solar Forcing on the East Asian Winter Monsoon Based on HadCM3 and Observations

  • Jiapeng Miao
  • Tao Wang
  • Huijun Wang
  • Yongqi Gao
Original Paper

Abstract

In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon (EAWM) by analyzing a four-member ensemble of 600-year simulations performed with HadCM3 (Hadley Centre Coupled Model, version 3). We find that the EAWM is strengthened when total solar irradiance (TSI) increases on the multidecadal time scale. The model results indicate that positive TSI anomalies can result in the weakening of Atlantic meridional overturning circulation, causing negative sea surface temperature (SST) anomalies in the North Atlantic. Especially for the subtropical North Atlantic, the negative SST anomalies can excite an anomalous Rossby wave train that moves from the subtropical North Atlantic to the Greenland Sea and finally to Siberia. In this process, the positive sea-ice feedback over the Greenland Sea further enhances the Rossby wave. The wave train can reach the Siberian region, and strengthen the Siberian high. As a result, low-level East Asian winter circulation is strengthened and the surface air temperature in East Asia decreases. Overall, when solar forcing is stronger on the multidecadal time scale, the EAWM is typically stronger than normal. Finally, a similar linkage can be observed between the EAWM and solar forcing during the period 1850–1970.

Key words

solar forcing East Asian winter monsoon Atlantic sea surface temperature Rossby wave train 

摘要

为了研究太阳活动低频信号对东亚冬季风的影响, 本文分析了耦合模式HadCM3的4组太阳强迫长期数值模拟试验结果. 我们发现, 在多年代际时间尺度上, 当太阳辐照度增加时东亚冬季风显著增强. 模式结果表明, 太阳辐照度正异常会导致大西洋经圈翻转环流减弱, 从而导致北大西洋出现负的海表温度异常. 北大西洋副热带区域的负海表温度异常激发出异常的Rossby波波列, 此波列向北传至格林兰海, 而后向西传播至西伯利亚区域. 在波列传播过程中, 格林兰海区域海冰变化使得Rossby波信号增强. 在Rossby波波列的作用下, 西伯利亚地区中低层大气辐合加强, 进而导致西伯利亚高压及东亚低层季风环流增强, 东亚地表气温显著降低. 类似的现象在部分观测资料中也存在.

关键词

太阳强迫 东亚冬季风 大西洋海表温度 Rossby波 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 41575086 and 41661144005), and the CAS–PKU (Chinese Academy of Sciences–Peking University) Joint Research Program.

References

  1. Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 5816–5842,  https://doi.org/10.1175/JCLI3937.1 CrossRefGoogle Scholar
  2. Cox, M. D., 1984: A primitive equation, 3-dimensional model of the ocean. GFDL Ocean Group Technical Rep 1. Princeton NJ, USA, 143 pp.Google Scholar
  3. Ding, Y. H., and Coauthors, 2014: Interdecadal variability of the east asian winter monsoon and its possible links to global climate change. Journal of Meteorological Research, 28, 693–713,  https://doi.org/10.1007/s13351-014-4046-y CrossRefGoogle Scholar
  4. Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 2147–2153,  https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2 CrossRefGoogle Scholar
  5. Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 2073–2076,  https://doi.org/10.1029/2000GL012311 CrossRefGoogle Scholar
  6. Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147–168,  https://doi.org/10.1007/s003820050010 CrossRefGoogle Scholar
  7. Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001,  https://doi.org/10.1029/2009RG000282 CrossRefGoogle Scholar
  8. Gray, L. J., and Coauthors, 2013: A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res., 118, 13405–13420,  https://doi.org/10.1002/2013JD020062 Google Scholar
  9. Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703,  https://doi.org/10.1029/2005GL023209 CrossRefGoogle Scholar
  10. Guo, Q. Y., 1994: Relationship between the variations of East Asian winter monsoon and temperature anomalies in China. Quarterly Journal of Applied Meteorology, 5, 218–225. (in Chinese)Google Scholar
  11. Haigh, J. D., 2001: Climate variability and the influence of the sun. Science, 294, 2109–2111,  https://doi.org/10.1126/science.1067013 CrossRefGoogle Scholar
  12. He, J. H., J. H. Ju, Z. P. Wen, J. M. Lu, and Q. H. Jin, 2007: A review of recent advances in research on Asian monsoon in China. Adv. Atmos. Sci., 24, 972–992,  https://doi.org/10.1007/s00376-007-0972-2 CrossRefGoogle Scholar
  13. He, S. P., Y. Q. Gao, F. Li, H. J. Wang, and Y. C. He, 2017: Impact of arctic oscillation on the East Asian climate: A review. Earth-Science Reviews, 164, 48–62,  https://doi.org/10.1016/j.earscirev.2016.10.014 CrossRefGoogle Scholar
  14. Hori, M. E., and H. Ueda, 2006: Impact of global warming on the East Asian winter monsoon as revealed by nine coupled atmosphere-ocean GCMs. Geophys. Res. Lett., 33, L03713,  https://doi.org/10.1029/2005GL024961 Google Scholar
  15. Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196,  https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2 CrossRefGoogle Scholar
  16. Hu, Z. Z., L. Bengtsson, and K. Arpe, 2000: Impact of global warming on the Asian winter monsoon in a coupled GCM. J. Geophys. Res., 105, 4607–4624,  https://doi.org/10.1029/1999JD901031 CrossRefGoogle Scholar
  17. Huo, W.-J., and Z.-N. Xiao, 2016: The impact of solar activity on the 2015/16 El Ni˜no event. Atmos. Oceanic Sci. Lett., 9, 428–435,  https://doi.org/10.1080/16742834.2016.1231567 CrossRefGoogle Scholar
  18. Huo, W.-J., and Z.-N. Xiao, 2017: Anomalous pattern of ocean heat content during different phases of the solar cycle in the tropical Pacific. Atmos. Oceanic Sci. Lett., 10, 9–16,  https://doi.org/10.1080/16742834.2017.1247412 CrossRefGoogle Scholar
  19. Jiang, Y. Q., and Coauthors, 2017: Anthropogenic aerosol effects on East Asian winter monsoon: The role of black carboninduced Tibetan Plateau warming. J. Geophys. Res., 122, 5883–5902,  https://doi.org/10.1002/2016JD026237 Google Scholar
  20. Kodera, K., 2002: Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO. Geophys. Res. Lett., 29, 1218,  https://doi.org/10.1029/2001GL014557 CrossRefGoogle Scholar
  21. Kodera, K., 2004: Solar influence on the Indian Ocean Monsoon through dynamical processes. Geophys. Res. Lett., 31, L24209,  https://doi.org/10.1029/2004GL020928 CrossRefGoogle Scholar
  22. Labitzke, K., 1987: Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophys. Res. Lett., 14, 535–537,  https://doi.org/10.1029/GL014i005p00535 CrossRefGoogle Scholar
  23. Labitzke, K., and H. Van Loon, 1988: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the northern hemisphere in winter. J. Atmos. Terr. Phys., 50, 197–206,  https://doi.org/10.1016/0021-9169(88)90068-2 Google Scholar
  24. Latif, M., W. Park, H. Ding, and N. S. Keenlyside, 2009: Internal and external North Atlantic sector variability in the kiel climate model. Meteor. Z., 18, 433–443,  https://doi.org/10.1127/0941-2948/2009/0395 CrossRefGoogle Scholar
  25. Lau, K.-M., and M.-T. Li, 1984: The monsoon of East Asia and its global associations—a survey. Bull. Amer. Meteor. Soc., 65, 114–125,  https://doi.org/10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2 CrossRefGoogle Scholar
  26. Lean, J., and D. Rind, 2001: Earth’s response to a variable sun. Science, 292, 234–236,  https://doi.org/10.10126/science.1060082 CrossRefGoogle Scholar
  27. Li, S. L., and G. T. Bates, 2007: Influence of the atlantic multidecadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126–135,  https://doi.org/10.1007/s00376-007-0126-6 CrossRefGoogle Scholar
  28. Meehl, G. A., and J. M. Arblaster, 2009: A lagged warm event–like response to peaks in solar forcing in the Pacific region. J. Climate, 22, 3647–3660,  https://doi.org/10.1175/2009JCLI2619.1 CrossRefGoogle Scholar
  29. Meehl, G. A., W. M. Washington, T. M. L. Wigley, J. M. Arblaster, and A. Dai, 2003: Solar and greenhouse gas forcing and climate response in the Twentieth century. J. Climate, 16, 426–444.CrossRefGoogle Scholar
  30. Meehl, G. A., J. M. Arblaster, G. Branstator, and H. van Loon, 2008: A coupled air-sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 2883–2897,  https://doi.org/10.1175/2007JCLI1776.1 CrossRefGoogle Scholar
  31. Meehl, G. A., J. M. Arblaster, K. Matthes, F. Sassi, and H. van Loon, 2009: Amplifying the pacific climate system response to a small 11-year solar cycle forcing. Science, 325, 1114–1118,  https://doi.org/10.1126/science.1172872 CrossRefGoogle Scholar
  32. Miao, J. P., T. Wang, Y. L. Zhu, J. Z. Min, H. J. Wang, and D. Guo, 2016: Response of the East Asian winter monsoon to strong tropical volcanic eruptions. J.Climate, 29, 5041–5057,  https://doi.org/10.1175/JCLI-D-15-0600.1 CrossRefGoogle Scholar
  33. Otterå, O. H., M. Bentsen, H. Drange, and L. L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3, 688–694,  https://doi.org/10.1038/ngeo955 CrossRefGoogle Scholar
  34. Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123–146,  https://doi.org/10.1007/s003820050009 CrossRefGoogle Scholar
  35. Rind, D., 2002: The sun’s role in climate variations. Science, 296, 673–677,  https://doi.org/10.1126/science.1069562 CrossRefGoogle Scholar
  36. Schurer, A., S. F. B. Tett, M. Mineter, and G. C. Hegerl, 2013: Euroclim500—Causes of change in European mean and extreme climate over the past 500 years: Climate variable output from HadCM3 numerical model. NCAS British Atmospheric Data Centre.Google Scholar
  37. Schurer, A. P., S. F. B. Tett, and G. C. Hegerl, 2014: Small influence of solar variability on climate over the past millennium. Nature Geoscience, 7, 104–108,  https://doi.org/10.1038/ngeo2040 CrossRefGoogle Scholar
  38. Shindell, D. T., G. A. Schmidt, M. E. Mann, D. Rind, and A. Waple, 2001: Solar forcing of regional climate change during the maunder minimum. Science, 294, 2149–2152,  https://doi.org/10.1126/science.1064363 CrossRefGoogle Scholar
  39. Steinhilber, F., J. Beer, and C. Fröhlich, 2009: Total solar irradiance during the Holocene. Geophys. Res. Lett., 36, L19704,  https://doi.org/10.1029/2009GL040142 CrossRefGoogle Scholar
  40. Sun, J. Q., S. Wu, and J. Ao, 2016: Role of the North Pacific sea surface temperature in the East Asian winter monsoon decadal variability. Climate Dyn., 46, 3793–3805,  https://doi.org/10.1007/s00382-015-2805-9 CrossRefGoogle Scholar
  41. Sung, M.-K., G.-H. Lim, and J.-S. Kug, 2010: Phase asymmetric downstream development of the North Atlantic Oscillation and its impact on the East Asian winter monsoon. J. Geophys. Res., 115, D09105,  https://doi.org/10.1029/2009JD013153 CrossRefGoogle Scholar
  42. Swingedouw, D., L. Terray, C. Cassou, A. Voldoire, D. Salas-Mélia, and J. Servonnat, 2011: Natural forcing of climate during the last millennium: Fingerprint of solar variability. Climate Dyn., 36, 1349–1364,  https://doi.org/10.1007/s00382-010-0803-5 CrossRefGoogle Scholar
  43. Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627,  https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2 CrossRefGoogle Scholar
  44. Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.Google Scholar
  45. Thiéblemont, R., K. Matthes, N.-E. Omrani, K. Kodera, and F. Hansen, 2015: Solar forcing synchronizes decadal North Atlantic climate variability. Nature Communications, 6, 8268,  https://doi.org/10.1038/ncomms9268 CrossRefGoogle Scholar
  46. Tung, K. K., and C. D. Camp, 2008: Solar cycle warming at the Earth’s surface in NCEP and ERA-40 data: A linear discriminant analysis. J. Geophys. Res., 113, D05114,  https://doi.org/10.1029/2007JD009164 CrossRefGoogle Scholar
  47. van Loon, H., G. A. Meehl, and J. M. Arblaster, 2004: A decadal solar effect in the tropics in July–August. Journal of Atmospheric and Solar-Terrestrial Physics, 66, 1767–1778,  https://doi.org/10.1016/j.jastp.2004.06.003 CrossRefGoogle Scholar
  48. van Loon, H., G. A. Meehl, and D. J. Shea, 2007: Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res., 112, D02108,  https://doi.org/10.1029/2006JD007378 Google Scholar
  49. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536,  https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2 CrossRefGoogle Scholar
  50. Wang, H. J., and S. P. He, 2012: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chinese Science Bulletin, 57, 3535–3540,  https://doi.org/10.1007/s11434-012-5285-x CrossRefGoogle Scholar
  51. Wang, R. L., Z. N. Xiao, K. Y. Zhu, and Z. T. Gao, 2015: Asymmetric impact of solar activity on the east asian winter climate and its possible mechanism. Chinese Journal of Atmospheric Sciences, 39, 815–826,  https://doi.org/10.3878/j.issn.1006-9895.1410.14211. (in Chinese)Google Scholar
  52. Wang, S.-Y., and J. P. Liu, 2016: Delving into the relationship between autumn Arctic sea ice and central–eastern Eurasian winter climate. Atmos. Oceanic Sci. Lett., 9, 366–374,  https://doi.org/10.1080/16742834.2016.1207482 CrossRefGoogle Scholar
  53. Wang, T., H. J. Wang, O. H. Otterå, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu, 2013: Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s. Atmos. Chem. Phys., 13, 12 433–12 450,  https://doi.org/10.5194/acp-13-12433-2013 CrossRefGoogle Scholar
  54. Wang, Y. M., J. L. Lean, and N. R. Sheeley, Jr., 2005: Modeling the sun’s magnetic field and irradiance since 1713. The Astrophysical Journal, 625, 522–538,  https://doi.org/10.1086/429689 CrossRefGoogle Scholar
  55. Wang, Y. M., S. L. Li, and D. H. Luo, 2009: Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation. J. Geophys. Res., 114, D02112,  https://doi.org/10.1029/2008JD010929
  56. Weng, H. Y., 2012: Impacts of multi-scale solar activity on climate. Part I: Atmospheric circulation patterns and climate extremes. Adv. Atmos. Sci., 29, 867–886,  https://doi.org/10.1007/s00376-012-1238-1 Google Scholar
  57. Wu, B. Y., and J. Wang, 2002: Winter arctic oscillation, siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897,  https://doi.org/10.1029/2002GL015373
  58. Xiao, Z. N., D. L. Li, L. M. Zhou, L. Zhao, and W. J. Huo, 2017: Interdisciplinary studies of solar activity and climate change. Atmos. Oceanic Sci. Lett., 10, 325–328,  https://doi.org/10.1080/16742834.2017.1321951 CrossRefGoogle Scholar
  59. Xu, M. M., H. M. Xu, and J. Ma, 2016: Responses of the East Asian winter monsoon to global warming in CMIP5 models. Int. J. Climatol., 36, 2139–2155,  https://doi.org/10.1002/joc.4480 CrossRefGoogle Scholar
  60. Yang, S., K.-M. Lau, and K.-M. Kim, 2002: Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J. Climate, 15, 306–325,  https://doi.org/10.1175/1520-0442(2002)015<306:VOTEAJ>2.0.CO;2 CrossRefGoogle Scholar
  61. Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Ni˜no on the East Asian monsoon: A diagnostic study of the ′86/87 and ′91/92 events. J. Meteor. Soc. Japan, 74, 49–62,  https://doi.org/10.2151/jmsj1965.74.149 CrossRefGoogle Scholar
  62. Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Ni˜no on the precipitation in China. Adv. Atmos. Sci., 16, 229–241,  https://doi.org/10.1007/BF02973084 CrossRefGoogle Scholar
  63. Zhou, J. S., and K.-K. Tung, 2010: Solar cycles in 150 years of global sea surface temperature data. J. Climate, 23, 3234–3248,  https://doi.org/10.1175/2010JCLI3232.1 CrossRefGoogle Scholar
  64. Zhou, W., 2017: Impact of Arctic amplification on East Asian winter climate. Atmos. Oceanic Sci. Lett., 10, 385–388,  https://doi.org/10.1080/16742834.2017.1350093 CrossRefGoogle Scholar
  65. Zhou, W., C. Y. Li, and X. Wang, 2007a: Possible connection between Pacific Oceanic interdecadal pathway and east Asian winter monsoon. Geophys. Res. Lett., 34, L01701,  https://doi.org/10.1029/2006GL027809 CrossRefGoogle Scholar
  66. Zhou, W., X. Wang, T. J. Zhou, C. Li, and J. C. L. Chan, 2007b: Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteor. Atmos. Phys., 98, 283–293,  https://doi.org/10.1007/s00703-007-0263-6 CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiapeng Miao
    • 1
    • 6
  • Tao Wang
    • 1
    • 2
  • Huijun Wang
    • 1
    • 2
    • 3
    • 4
  • Yongqi Gao
    • 1
    • 5
  1. 1.Nansen-Zhu International Research Center, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Key Laboratory of Meteorological DisasterNanjing University of Information Science and TechnologyNanjingChina
  4. 4.Climate Change Research CenterChinese Academy of SciencesBeijingChina
  5. 5.Nansen Environmental and Remote Sensing Center/Bjerknes Centre for Climate ResearchBergenNorway
  6. 6.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations