Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 9, pp 1114–1128 | Cite as

Varying Rossby Wave Trains from the Developing to Decaying Period of the Upper Atmospheric Heat Source over the Tibetan Plateau in Boreal Summer

  • Chuandong Zhu
  • Rongcai Ren
  • Guoxiong Wu
Original Paper
  • 49 Downloads

Abstract

This study demonstrates the two different Rossby wave train (RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau (TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT. Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.

Key words

Tibetan Plateau upper atmospheric heat source Rossby wave train circulation and weather 

摘要

本研究论证了与北半球夏季青藏高原上空发展/衰亡的高层大气热源相关的两种不同的Rossby波列. 结果表明, 夏季青藏高原上空高层大气热源(TPUHS)由准双周变率主导, 尤其是在七月下旬至八月中旬(副热带急流稳定位于青藏高原以北). 在TPUHS事件的发展阶段, 对应增强的TPUHS是青藏高原上空的异常高压, 它是由青藏高原向东北方向延伸波列(经华北, 中太平洋, 阿拉斯加, 到达东北太平洋地区)的主要波源. 在TPUHS的峰值位相附近, 由于进一步加深的对流加热, 青藏高原上空的异常高压被异常低压替代, 此波列破碎. 尽管在青藏高原上空持续高层(低层)辐散(辐合)的动力抵消作用下, 这个异常低压仅维持三到四天, 但它是连接贝加尔湖异常高压的新波源. 当此异常低压快速减弱时, 贝加尔湖高压成为新波列的主要波源. 从TPUHS的峰值到峰值后的8天左右, 此波列一直在北太平洋地区向东发展. 然而, 沿着与衰减TPUSH相关联的波列的中心, 大部分比沿着以前波列的中心要更弱. 因此, 从TPUSH事件的发展至衰减阶段, 它们对环流和天气的影响有相当大地不同.

关键词

青藏高原 青藏高原 Rossby波列 环流和天气 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Thanks to the two anonymous reviewers for their constructive comments and suggestions. This work was jointly supported by the National Science Foundation of China (Grant Nos. 91437105, 41575041 and 41430533) and the China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201406001). We are grateful for the availability of the NCEP–NCAR reanalysis dataset via the website https://doi.org/www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html, and the GPCP dataset via http://precip.gsfc.nasa.nov/.

References

  1. Bolvin D. T., R. F. Adler G. J. Huffman E. J. Nelkin, and J. P. Poutiainen, 2009: Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. Journal of Applied Meteorology and Climatology, 48, 1843–1857,  https://doi.org/10.1175/2009JAMC2147.1 CrossRefGoogle Scholar
  2. Bretherton C. S., M. Widmann V. P. Dymnikov J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990–2009,  https://doi.org/10.1175/1520-04421999012<1990:TENOSD>2.0.CO;2 CrossRefGoogle Scholar
  3. Buermann W., B. Lintner, and C. Bonfils, 2005: A wintertime Arctic Oscillation signature on early-season Indian Ocean monsoon intensity. J. Climate, 18, 2247–2269,  https://doi.org/10.1175/JCLI3377.1 CrossRefGoogle Scholar
  4. Chang C. P., P. Harr, and J. H. Ju, 2001: Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall-ENSO relationship. J. Climate, 14, 2376–2380,  https://doi.org/10.1175/1520-04422001014<2376:PROACO>2.0.CO;2 CrossRefGoogle Scholar
  5. Chen L. X., E. R. Reiter, and Z. Q. Feng, 1985: The atmospheric heat source over the Tibetan Plateau: May-August 1979. Mon. Wea. Rev., 113, 1771–1790,  https://doi.org/10.1175/1520-04931985113<1771:TAHSOT>2.0.CO;2 CrossRefGoogle Scholar
  6. Chen L. X., Q. G. Zhu H. B. Luo J. H. He M. Dong, and Z. Q. Feng, 1991: The East Asian Monsoon. Chinese Meteorological Press, 362 pp. (in Chinese)Google Scholar
  7. Duan A. M., 2003: The influence of thermal and mechanical forcing of Tibetan Plateau upon the climate patterns in East Asia. PhD Dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 23–31. (in Chinese)Google Scholar
  8. Duan A. M., Y. M. Liu, and G. X. Wu, 2005: Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer. Science in China Series D: Earth Sciences, 48, 250–257,  https://doi.org/10.1360/02yd0510 CrossRefGoogle Scholar
  9. Duan A. M., W. R. Wang Y. H. Lei, and Y. F. Cui, 2013: Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J. Climate, 26, 261–275,  https://doi.org/10.1175/JCLI-D-11-00669.1 CrossRefGoogle Scholar
  10. Duan A. M., G. X. Wu Y. M. Liu Y. M. Ma, and P. Zhao, 2012: Weather and Climate Effects of the Tibetan Plateau. Adv. Atmos. Sci., 29, 978–992,  https://doi.org/10.1007/s00376-012-1220-y CrossRefGoogle Scholar
  11. Flohn H., 1960: Recent investigation on the mechanism of the “summer monsoon” of southern and eastern Asia. Proc. Symp. Monsoon of the World, New Delhi, Hind Union Press, 75–88.Google Scholar
  12. Grose W. L., and B. J. Hoskins, 1979: On the influence of orography on large-scale atmospheric flow. J. Atmos. Sci., 36, 223–234,  https://doi.org/10.1175/1520-04691979036<0223:OTIOOO>2.0.CO;2 CrossRefGoogle Scholar
  13. Hoskins B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196,  https://doi.org/10.1175/1520-04691981038<1179:TSLROA>2.0.CO;2 CrossRefGoogle Scholar
  14. Huang R. H., 1985: The influence of the heat source anomaly over Tibetan Plateau on the northern hemispheric circulation anomalies. Acta Meteorologica Sinica, 43, 208–220,  https://doi.org/10.11676/qxxb1985.026. (in Chinese)Google Scholar
  15. Huang R. H., and K. Gambo, 1981: The response of a model atmosphere in middle latitude to forcing by topography and stationary heat sources. J. Meteor. Soc. Japan, 59, 220–237,  https://doi.org/10.2151/jmsj1965.59.2220 CrossRefGoogle Scholar
  16. Jiang X. W., Y. Q. Li S. Yang K. Yang, and J. W. Chen, 2016: Interannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western Maritime Continent. J. Climate, 29, 121–138,  https://doi.org/10.1175/JCLI-D-15-0181.1 CrossRefGoogle Scholar
  17. Kalnay E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalys is project. Bull. Amer. Meteor. Soc., 77, 437–471,  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  18. Kelly W. E., Jr., and D. R. Mock, 1982: A diagnostic study of upper tropospheric cold lows over the western north pacific. Mon. Wea. Rev., 110, 471–480,  https://doi.org/10.1175/1520-04931982110<0471:ADSOUT>2.0.CO;2 CrossRefGoogle Scholar
  19. Krishnamurti T. N., S. M. Daggupaty J. Fein M. Kanamitsu, and J. D. Lee, 1973: Tibetan high and upper tropospheric tropical circulations during northern summer. Bull. Amer. Meteor. Soc., 54, 1234–1249.CrossRefGoogle Scholar
  20. Lin Z. D., and R. Y. Lu, 2008: Abrupt northward jump of the East Asian upper-tropospheric jet stream in mid-summer. J. Meteor. Soc. Japan, 86, 857–866,  https://doi.org/10.2151/jmsj.86.857 CrossRefGoogle Scholar
  21. Liu X., W. P. Li, and G. X. Wu, 2002: Interannual variation of the diabatic heating over the Tibetan Plateau and the Northern Hemispheric circulation in summer. Acta Meteorologica Sinica, 60, 267–277,  https://doi.org/10.3321/j.issn:0577-6619.2002.03.002. (in Chinese)Google Scholar
  22. Liu X., G. X. Wu, W. P. Li, and Y. M. Liu, 2001a: Thermal adaptation of the large-scale circulation to the summer heating over the Tibetan Plateau. Progress in Natural Science, 11, 207–214.Google Scholar
  23. Liu Y. M., G. X. Wu, and R. C. Ren, 2004: Relationship between the subtropical anticyclone and diabatic heating. J. Climate, 17, 682–698,  https://doi.org/10.1175/1520-04422004017<0682:RBTSAA>2.0.CO;2 CrossRefGoogle Scholar
  24. Liu Y. M., B. J. Hoskins, and M. Blackburn, 2007b: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan, 85B, 1–19,  https://doi.org/10.2151/jmsj.85B.1 CrossRefGoogle Scholar
  25. Liu Y. M., Q. Bao A. M. Duan Z. A. Qian, and G. X. Wu, 2007a: Recent progress in the impact of the Tibetan Plateau on climate in China. Adv. Atmos. Sci., 24, 1060–1076,  https://doi.org/10.1007/s00376-007-1060-3 CrossRefGoogle Scholar
  26. Luo H. B., and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111, 922–944,  https://doi.org/10.1175/1520-0493dy1983111<0922:TLSCAH>2.0.CO;2 CrossRefGoogle Scholar
  27. Luo H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966–989,  https://doi.org/10.1175/1520-04931984112<0966:TLSCAH>2.0.CO;2 CrossRefGoogle Scholar
  28. Mason R. B., and C. E. Anderson, 1963: The development and decay of the 100-MB. Summertime anticyclone over southern Asia. Mon.Wea. Rev., 91, 3–12,  https://doi.org/10.1175/1520-04931963091<0003:TDADOT>2.3.CO;2 CrossRefGoogle Scholar
  29. Murakami M., and Y. H. Ding, 1982: Wind and temperature changes over Eurasia during the early summer of 1979. J. Meteor. Soc. Japan, 60, 183–196,  https://doi.org/10.2151/jmsj1965.60.1183 CrossRefGoogle Scholar
  30. Nigam S., C. Chung, and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP-NCAR reanalyses, and NCAR CCM3 simulation. J. Climate, 13, 3152–3171,  https://doi.org/10.1175/1520-04422000013<3152:EDHIEA>2.0.CO;2 CrossRefGoogle Scholar
  31. Nitta T., 1983: Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon. J. Meteor. Soc. Japan, 61, 590–605,  https://doi.org/10.2151/jmsj1965.61.4590 CrossRefGoogle Scholar
  32. Plumb R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217–229,  https://doi.org/10.1175/1520-04691985042<0217:OTTDPO>2.0.CO;2 CrossRefGoogle Scholar
  33. Reiter E. R., and D. Y. Gao, 1982: Heating of the Tibet Plateau and movements of the South Asian high during spring. Mon. Wea. Rev., 110, 1694–1711,  https://doi.org/10.1175/1520-04931982110<1694:HOTTPA>2.0.CO;2 CrossRefGoogle Scholar
  34. Ren R. C., and J. G. Hu, 2014: An emerging precursor signal in the stratosphere in recent decades for the Indian summer monsoon onset. Geophys. Res. Lett., 41, 7391–7396,  https://doi.org/10.1002/2014GL061633 CrossRefGoogle Scholar
  35. Ren R. C., Y. M. Liu, and G. X. Wu, 2007: Impact of South Asia High on the short-term variation of the subtropical anticyclone over western Pacific in July 1998. Acta Meteorologica Sinica, 65, 183–197,  https://doi.org/10.11676/qxxb2007.018. (in Chinese)Google Scholar
  36. Rodwell M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 1385–1404,  https://doi.org/10.1002/qj.49712253408 CrossRefGoogle Scholar
  37. Rodwell M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 3192–3211,  https://doi.org/10.1175/1520-04422001014<3192:SAASM>2.0.CO;2 CrossRefGoogle Scholar
  38. Romatschke U., R. A. J. Houze Jr., 2011: Characteristics of precipitating convective systems in the South Asian monsoon. Journal of Hydrometeorology, 12, 3–26,  https://doi.org/10.1175/2010JHM1289.1 CrossRefGoogle Scholar
  39. Tao S. Y., and F. K. Zhu, 1964: The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the West-Pacific subtropical anticyclone over the far east. Acta Meteorologica Sinica, 34, 387–396,  https://doi.org/10.11676/qxxb1964.039. (in Chinese)Google Scholar
  40. Ueda H., H. Kamahori, and N. Yamazaki, 2003: Seasonal contrasting features of heat and moisture budgets between the eastern and western Tibetan Plateau during the GAME IOP. J. Climate, 16, 2309–2324,  https://doi.org/10.1175/2757.1 CrossRefGoogle Scholar
  41. Wang M. R., and A. M. Duan, 2015: Quasi-biweekly oscillation over the tibetan plateau and its link with the Asian summer monsoon. J. Climate, 28, 4921–4940,  https://doi.org/10.1175/JCLI-D-14-00658.1 CrossRefGoogle Scholar
  42. Wang T. M., G. X. Wu, and M. Ying, 2011: Comparison of diabatic heating data from NCEP/NCAR (I, II) and ERA40. Acta Scientiarum Naturalium Universitatis Sunyatseni, 50, 128–134. (in Chinese)Google Scholar
  43. Wu G. X., and Y. M. Liu, 2000: Thermal adaptation, overshooting, dispersion, and subtropical anticyclone Part I: Thermal adaptation and overshooting. Chinese Journal of Atmospheric Sciences, 24, 433–446,  https://doi.org/10.3878/j.issn.1006-9895.2000.04.01. (in Chinese)Google Scholar
  44. Wu G. X., Y. M. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high I: Scale analysis. Acta Meteorologica Sinica, 57, 257–263,  https://doi.org/10.11676/qxxb1999.025. (in Chinese)Google Scholar
  45. Wu G. X., and Y. S. Zhang, 1998: Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea. Monthly Weather Review, 126, 913–927,  https://doi.org/10.1175/1520-04931998126<0913:TPFATT>2.0.CO;2 CrossRefGoogle Scholar
  46. Wu G. X., W. P. Li H. Guo H. Li J. Xue, and Z. Wang, 1997: Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian summer monsoon. Collections on the Memory of Zhao Jiuzhang D. Z. Ye, Ed., Chinese Science Press, 116–126. (in Chinese)Google Scholar
  47. Wu G. X., B. He Y. M. Liu Q. Bao, and R. C. Ren, 2015: Location and variation of the summertime upper-troposphere temperature maximum over South Asia. Climate Dyn., 45, 2757–2774,  https://doi.org/10.1007/s00382-015-2506-4 CrossRefGoogle Scholar
  48. Wu G. X., X. Liu Q. Zhang Y. F. Qian J. Y. Mao Y. M. Liu, and W. P. Li, 2002: Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau. Climatic and Environmental Research, 7, 184–201,  https://doi.org/10.3878/j.issn.1006-9585.2002.02.06 Google Scholar
  49. Wu G. X., Y. Liu X. Zhu W. Li R. Ren A. Duan, and X. Y. Liang, 2009: Multi-scale forcing and the formation of subtropical desert and monsoon. Annales Geophysicae, 27, 3631–3644,  https://doi.org/10.5194/angeo-27-3631-2009 CrossRefGoogle Scholar
  50. Wu G. X., Y. M. Liu B. He Q. Bao A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 404,  https://doi.org/10.1038/srep00404 CrossRefGoogle Scholar
  51. Wu G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian Climate. Journal of Hydrometeorology, 8, 770–789,  https://doi.org/10.1175/JHM609.1 CrossRefGoogle Scholar
  52. Yanai M., and G. X. Wu, 2006: Effects of the Tibetan Plateau. Chap. 13, Asian Monsoon B. Wang, Ed., Springer, Chichester, 513–549.CrossRefGoogle Scholar
  53. Yanai M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer monsoon. J. Meteor. Soc. Japan, 70, 319–351,  https://doi.org/10.2151/jmsj1965.70.1B319 CrossRefGoogle Scholar
  54. Yang J., Q. Bao B. Wang H. Z. He M. N. Gao, and D. Y. Gong, 2016: Characterizing two types of transient intraseasonal oscillations in the Eastern Tibetan Plateau summer rainfall. Climate Dyn., 48, 1749–1768,  https://doi.org/10.1007/s00382-016-3170-z CrossRefGoogle Scholar
  55. Yang W. Y., D. Z. Ye, and G. X. Wu, 1992: The influence of the Tibetan Plateau on the summer thermal and circulation fields over East Asia I. The Humidity on the western Tibetan Plateau in the Height of Summer. Chinese Journal of Atmospheric Sciences, 16, 41–51,  https://doi.org/10.3878/j.issn.1006-9895.1992.01.06006-9895.1992.01.06. (in Chinese)Google Scholar
  56. Ye D. Z., and Y. X. Gao, 1979: Meteorology of Tibetan Plateau. Science Press, 278 pp. (in Chinese)Google Scholar
  57. Ye D. Z., and G. J. Yang, 1979: The Average Vertical Circulation over the Qinghai-Xizang Plateau. Science Press. (in Chinese)Google Scholar
  58. Ye D. Z., and G. X. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181–198,  https://doi.org/10.1007/BF01277509 CrossRefGoogle Scholar
  59. Zhang Y., L. X. Chen J. H. He, and W. Li, 2009: A study of the characteristics of the low-frequency circulation over the Tibetan Plateau and its association with precipitation in the Yangtze River valley in 1998. Acta Meteorologica Sinica, 23, 175–190.Google Scholar
  60. Zhao P., and L. X. Chen, 2001: Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation. Adv. Atmos. Sci., 18, 106–116,  https://doi.org/10.1007/s00376-001-0007-3 CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)Institute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters and KLMENanjing University of Information Science and TechnologyNanjingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations