Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 2, pp 146–157 | Cite as

Comparison between MODIS-derived day and night cloud cover and surface observations over the North China Plain

  • Xiao Zhang
  • Saichun Tan
  • Guangyu Shi
Original Paper

Abstract

Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover (TCC) observed by MODIS onboard the Terra and Aqua satellites was compared with Synop meteorological station observations over the North China Plain and its surrounding regions for 11 years during daytime and 7 years during nighttime. The Synop data were recorded eight times a day at 3-h intervals. Linear interpolation was used to interpolate the Synop data to the MODIS overpass time in order to reduce the temporal deviation between the satellite and Synop observations. Results showed that MODIS-derived TCC had good consistency with the Synop observations; the correlation coefficients ranged from 0.56 in winter to 0.73 in summer for Terra MODIS, and from 0.55 in winter to 0.71 in summer for Aqua MODIS. However, they also had certain differences. On average, the MODIS-derived TCC was 15.16% higher than the Synop data, and this value was higher at nighttime (15.58%–16.64%) than daytime (12.74%–14.14%). The deviation between the MODIS and Synop TCC had large seasonal variation, being largest in winter (29.53%–31.07%) and smallest in summer (4.46%–6.07%). Analysis indicated that cloud with low cloud-top height and small cloud optical thickness was more likely to cause observation bias. Besides, an increase in the satellite view zenith angle, aerosol optical depth, or snow cover could lead to positively biased MODIS results, and this affect differed among different cloud types.

Keywords

cloud cover MODIS cloud-top height cloud optical thickness aerosol optical depth view zenith angle 

摘要

地面和卫星观测是目前云观测中两个最重要的观测途径. MODIS 作为被动遥感卫星, 华北地区经常出现的雾霾天气中厚气溶胶团对太阳辐射的强迫作用将进一步影响其对云的观测. 目前的研究中, 对于华北地区卫星和地面观测的对比及影响其观测差异的可能因素, 以及不同云类型下二者的云量观测差异的研究仍旧不足. 本次研究对由 MODIS 卫星和地面观测站观测的华北地区总云量(TCC)进行了对比. 研究表明, MODIS 观测的总云量略大于地面观测. 其中, 夜间二者差别(16.64%)大于日间(14.14%), 而冬季差别(31.07%)明显大于夏季(6.07%). 而云顶高度较低以及光学厚度较小的云更容易出现较大的观测偏差. 影响观测差异的原因还有卫星观测角, 气溶胶光学厚度以及积雪. 对于多数类型的云, 卫星观测角, 气溶胶光学厚度以及积雪量越大, 其云量观测差异也越大. 其中, 垂直发展较为旺盛的积雨云以及破碎状的云受卫星观测角的影响比层状云更大; 而不能覆盖全天空的云相对覆盖全天空的云受到气溶胶光学厚度的影响更大.

关键词

云量 MODIS 云顶高度 云光学厚度 气溶胶光学厚度 卫星观测角 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41590874 and 41590875) and the Ministry of Science and Technology of China (Grant No. 2014CB953703). The MODIS cloud and aerosol properties were provided by the Level 1 and Atmosphere Archive and Distribution System of the NASA Goddard Space Flight Center. We are grateful to the China Meteorological Administration for providing the visual surface cloud cover data.

References

  1. An, N., and K. C. Wang, 2015: A comparison of MODIS-derived cloud fraction with surface observations at five SURFRAD sites. Journal of Applied Meteorology and Climatology, 54, 1009–1020, https://doi.org/10.1175/JAMC-D-14-0206.1.CrossRefGoogle Scholar
  2. Bilal, M., and J. E. Nichol, 2015: Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events. J. Geophys. Res., 120, 7941–7957, https://doi.org/10.1002/2015JD023082.Google Scholar
  3. Che, H., and Coauthors, 2014: Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014.CrossRefGoogle Scholar
  4. Che, H. Z., G. Y. Shi, X. Y. Zhang, R. Arimoto, J. Q. Zhao, L. Xu, B. Wang, and Z. H. Chen, 2005: Analysis of 40 years of solar radiation data from China, 1961-2000. Geophys. Res. Lett., 32, L06803, https://doi.org/10.1029/2004GL022322.CrossRefGoogle Scholar
  5. Che, H. Z., X. Y. Zhang, Y. Li, Z. J. Zhou, and J. J. Qu, 2007: Horizontal visibility trends in China 1981-2005. Geophys. Res. Lett., 34, L24706, https://doi.org/10.1029/2007GL031450.CrossRefGoogle Scholar
  6. Chen, H. P., and H. J. Wang, 2015: Haze Days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res., 120, 5895–5909, https://doi.org/10.1002/2015JD023225.Google Scholar
  7. CMDSSS, 2009: China Meteorological Data Sharing Service System. China Meteorological Administration, Beijing, China. [Available at http://www.cma.gov.cn.]Google Scholar
  8. Dybbroe, A., K.-G. Karlsson, and A. Thoss, 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteor., 44, 39–54, https://doi.org/10.1175/JAM-2188.1.CrossRefGoogle Scholar
  9. Feister, U., H. Möller, T. Sattler, J. Shields, U. Görsdorf, and J. Güldner, 2010: Comparison of macroscopic cloud data from ground-based measurements using VIS/NIR and IR instruments at Lindenberg, Germany. Atmos. Res., 96, 395–407, https://doi.org/10.1016/j.atmosres.2010.01.012.CrossRefGoogle Scholar
  10. Fontana, F., D. Lugrin, G. Seiz, M. Meier, and N. Foppa, 2013: Intercomparison of satellite- and ground-based cloud fraction over Switzerland (2000-2012). Atmos. Res., 128, 1–12, https://doi.org/10.1016/j.atmosres.2013.01.013.CrossRefGoogle Scholar
  11. Green, M., S. Kondragunta, P. Ciren, and C. Y. Xu, 2009: Comparison of GOES and MODIS aerosol optical depth (AOD) to aerosol robotic network (AERONET) AOD and IMPROVE PM2.5mass at Bondville, Illinois. Journal of the Air & Waste Management Association, 59, 1082–1091, https://doi.org/10.3155/1047-3289.59.9.1082.CrossRefGoogle Scholar
  12. Hahn, C. J., S. G. Warren, and J. London, 1992: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8,1429–1446, https://doi.org/10.1175/1520-0442(1995)008<1429:TEOMOO>2.0.CO;2.CrossRefGoogle Scholar
  13. Hall, D. K., G. A. Riggs, and V. Salomonson, 2006: MODIS snow and sea ice products. Earth Science Satellite Remote Sensing, Qu et al., Eds., Springer, Berlin Heidelberg, 154–181, https://doi.org/10.1007/978-3-540-37293-69.CrossRefGoogle Scholar
  14. Heidinger, A. K., V. R. Anne, and C. Dean, 2002: Using MODIS to estimate cloud contamination of the AVHRR data record. J. Atmos. Oceanic Technol, 19, 586–601, https://doi.org/10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2.CrossRefGoogle Scholar
  15. Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global moderate resolution imaging spectro radiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008JD009837.CrossRefGoogle Scholar
  16. Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2004: Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42, 557–569, https://doi.org/10.1109/TGRS.2004.824067.CrossRefGoogle Scholar
  17. Huo, J., and D. R. Lu, 2012: Comparison of cloud cover from allsky imager and meteorological observer. J. Atmos. Oceanic Technol., 29, 1093–1101, https://doi.org/10.1175/JTECH-D-11-00006.1.CrossRefGoogle Scholar
  18. Kästner, M., P. Bissolli, and K. Hoppner, 2004: Comparison of a satellite based Alpine cloud climatology with observations of synoptic stations. Meteor. Z., 13, 233–243, https://doi.org/10.1127/0941-2948/2004/0013-0233.CrossRefGoogle Scholar
  19. Kazantzidis, A., P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, 2012: Cloud detection and classification with the use of whole-sky ground-based images. Atmos. Res., 113, 80–88, https://doi.org/10.1016/j.atmosres.2012.05.005.CrossRefGoogle Scholar
  20. Key, E. L., P. J. Minnett, and R. A. Jones, 2004: Cloud distributions over the coastal Arctic Ocean: Surface-based and satellite observations. Atmos. Res., 72, 57–88, https://doi.org/10.1016/j.atmosres.2004.03.029.CrossRefGoogle Scholar
  21. Kotarba, A. Z., 2009: A comparison of MODIS-derived cloud amount with visual surface observations. Atmos. Res., 92, 522–530, https://doi.org/10.1016/j.atmosres.2009.02.001.CrossRefGoogle Scholar
  22. Kotarba, A. Z., 2015: Evaluation of ISCCP cloud amount with MODIS observations. Atmos. Res., 153, 310–317, https://doi.org/10.1016/j.atmosres.2014.09.006.CrossRefGoogle Scholar
  23. Levy, R. C., L. A. Remer, and O. Dubovik, 2007a: Global aerosol optical properties and application to Moderate Resolution Imaging Spectro radiometer aerosol retrieval over land. J. Geophys. Res., 112, D13210, https://doi.org/10.1029/2006JD007815.Google Scholar
  24. Levy, R. C., L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, 2007b: Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectro radiometer spectral reflectance. J. Geophys. Res., 112, D13211, https://doi.org/10.1029/2006JD007811.Google Scholar
  25. Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, and N. C. Hsu, 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques Discussions, 6, 159–259, https://doi.org/10.5194/amtd-6-159-2013.CrossRefGoogle Scholar
  26. Li, X. Y., 2016: Empirical analysis of the smog factors in Beijing-Tianjin-Hebei region. Ecological Economy, 32, 144–150, https://doi.org/10.3969/j.issn.1671-4407.2016.03.029. (in Chinese)Google Scholar
  27. Li, Z., and Coauthors, 2013: Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmos. Chem. Phys., 13, 10 171–10 183, https://doi.org/10.5194/acp-13-10171-2013.CrossRefGoogle Scholar
  28. Liang, F., and X. A. Xia, 2005: Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000. Annales Geophysicae, 23, 2425–2432, https://doi.org/10.5194/angeo-23-2425-2005.CrossRefGoogle Scholar
  29. Lu, H., Y. W. Zhang, and J. Cai, 2015: Consistency and differences between remotely sensed and surface observed total cloud cover over China. Int. J. Remote Sens., 36, 4160–4176, https://doi.org/10.1080/01431161.2015.1072651.CrossRefGoogle Scholar
  30. Luo, Y. F., D. R. Lu, X. J. Zhou, W. L. Li, and Q. He, 2001: Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J. Geophys. Res., 106, 14 501–14 513, https://doi.org/10.1029/2001JD900030.CrossRefGoogle Scholar
  31. Ma, J. J., H. Wu, C. Wang, X. Zhang, Z. Q. Li, and X. H. Wang, 2014: Multiyear satellite and surface observations of cloud fraction over China. J. Geophys. Res., 119, 7655–7666, https://doi.org/10.1002/2013JD021413.Google Scholar
  32. Maddux, B. C., S. A. Ackerman, and S. Platnick, 2010: Viewing geometry dependencies in MODIS cloud products. J. Atmos. Oceanic Technol., 27, 1519–1528, https://doi.org/10.1175/2010JTECHA1432.1.CrossRefGoogle Scholar
  33. Mao, F. Y., M. M. Duan, Q. L. Min, W. Gong, Z. X. Pan, and G. Y. Liu, 2015: Investigating the impact of haze on MODIS cloud detection. J. Geophys. Res., 120,12 237–12 247, https://doi.org/10.1002/2015JD023555.Google Scholar
  34. Meerkötter, R., C. König, P. Bissolli, G. Gesell, and H. Mannstein, 2004: A 14-year European Cloud Climatology from NOAA/AVHRR data in comparison to surface observations. Geophys. Res. Lett., 31, L15103, https://doi.org/10.1029/2004GL020098.CrossRefGoogle Scholar
  35. Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. Journal of Applied Meteorology and Climatology, 47, 1175–1198, https://doi.org/10.1175/2007JAMC1705.1.CrossRefGoogle Scholar
  36. Minnis, P., D. A. Spangenberg, and V. Chakrapani, 2003: Distribution and validation of cloud cover derived from AVHRR data over the Arctic Ocean during the SHEBA year. Proceedingsofthe13thARMScienceTeamMeeting, Broomfield, Colorado.Google Scholar
  37. Platnick, S., M. D. King, S. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Transactionson Geoscience and Remote Sensing, 41, 459–473, https://doi.org/10.1109/TGRS.2002.808301.CrossRefGoogle Scholar
  38. Qiu, J. H., and L. Q. Yang, 2000: Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980-1994. Atmos. Environ., 34, 603–609, https://doi.org/10.1016/S1352-2310(99)00173-9.CrossRefGoogle Scholar
  39. Ramanathan, V.,R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243, 57–63, https://doi.org/10.1126/science.243.4887.57.CrossRefGoogle Scholar
  40. Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1.CrossRefGoogle Scholar
  41. Rossow, W. B., A. W. Walker, and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6, 2394–2418, https://doi.org/10.1175/1520-0442(1993)006<2394:COIAOC>2.0.CO;2.CrossRefGoogle Scholar
  42. Shang, H. Z., L. F. Chen, J. H. Tao, L. Su, and S. L. Jia, 2014: Synergetic use of MODIS cloud parameters for distinguishing high aerosol loadings from clouds over the North China Plain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 4879–4886, https://doi.org/10.1109/JSTARS.2014.2332427.CrossRefGoogle Scholar
  43. Wang, H., G. Y. Shi, X. Y. Zhang, S. L. Gong, S. C. Tan, B. Chen, H. Z. Che, and T. Li, 2015b: Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding region-Part 2: Aerosols’ radiative feedback effects. Atmos. Chem. Phys., 15, 3277–3287, https://doi.org/10.5194/acp-15-3277-2015.CrossRefGoogle Scholar
  44. Wang, H., and Coauthors, 2015c: Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing-Jin-Ji (China) and its nearby surrounding region-Part 1: Aerosol distributions and meteorological features. Atmos. Chem. Phys., 15, 3257–3275, https://doi.org/10.5194/acp-15-3257-2015.CrossRefGoogle Scholar
  45. Wang, H. J., H. P. Chen, and J. P. Liu, 2015a: Arctic sea ice decline intensified haze pollution in eastern China. Atmos. Oceanic Sci. Lett., 8, 1–9, https://doi.org/10.3878/AOSL20140081.Google Scholar
  46. Wang, H. J., and Coauthors, 2015d: A review of seasonal climate prediction research in China. Adv. Atmos. Sci., 32, 149–168, https://doi.org/10.1007/s00376-014-0016-7.CrossRefGoogle Scholar
  47. Warren, S. G., R. M. Eastman, and C. J. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971-96. J. Climate, 20, 717–738, https://doi.org/10.1175/JCLI4031.1.CrossRefGoogle Scholar
  48. Xia, X., 2010: A closer looking at dimming and brightening in China during 1961-2005. Annales Geophysicae, 28, 1121–1132, https://doi.org/10.5194/angeo-28-1121-2010.CrossRefGoogle Scholar
  49. Zhang, R., and Coauthors, 2013: Chemical characterization and source apportionment of PM2.5. in Beijing: Seasonal perspective. Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations