Advances in Atmospheric Sciences

, Volume 34, Issue 10, pp 1185–1194 | Cite as

Evolving perspectives on abrupt seasonal changes of the general circulation

Review

Abstract

Professor Duzheng YE (Tu-cheng YEH) was decades ahead of his time in proposing a model experiment to investigate whether abrupt seasonal changes of the general circulation can arise through circulation feedbacks alone, unrelated to underlying inhomogeneities at the lower boundary. Here, we introduce Professor YEH’s ideas during the 1950s and 1960s on the general circulation and summarize the results and suggestions of Yeh et al. (1959) on abrupt seasonal changes. We then review recent advances in understanding abrupt seasonal changes arising from model experiments like those proposed by Yeh et al. (1959). The model experiments show that circulation feedbacks can indeed give rise to abrupt seasonal transitions. In these transitions, large-scale eddies that originate in midlatitudes and interact with the zonal mean flow and meridional overturning circulations in the tropics play central roles.

Keywords

abrupt change general circulation Hadley cell large-scale eddies 

摘要

叶笃正教授对大气环流的季节突变的观点领先于他所处的时代数十年. 这体现在他所提议的一个模式实验, 该模式实验试图用于验证大气环流的季节突变是否可能仅仅通过环流内部的反馈就可以产生, 而无须依赖于下垫面性质的非均一性. 在这里, 我们首先简单介绍叶笃正教授于1950和60年代关于大气环流的见解, 并总结叶笃正、陶诗言和李麦村(1959)关于季节突变的主要结果及对其机理的猜想和实验建议. 然后我们综述对季节突变理解的最近进展, 尤其集中于那些通过由叶笃正先生等建议的模式实验所得到的理解. 模式实验显示环流反馈本身确实能够导致环流季节性突然转折的产生. 在这样的转折中, 源于中纬度的大尺度涡旋及其与纬向平均环流和热带经圈翻转环流的相互作用起着关键作用.

关键词

突变 大气环流 哈得来环流 大尺度涡旋 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birner T., D. W. J. Thompson, and T. G. Shepherd, 2013: Upgradient eddy fluxes of potential vorticity near the subtropical jet. Geophys. Res. Lett., 40, 5988–5993, doi: 10.1002/2013 GL057728.CrossRefGoogle Scholar
  2. Blumen, W., and W. M. Washington, 1973: Atmospheric dynamics and numerical weather prediction in the People’s Republic of China 1949-1966. Bull. Amer. Meteor. Soc., 54, 502–518, doi: 10.1175/1520-0477(1973)054<0502:ADANWP>2.0.CO;2.CrossRefGoogle Scholar
  3. Boos, W. R., and Z. M. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218–222, doi: 10.1038/nature08707.CrossRefGoogle Scholar
  4. Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nature Geoscience, 1, 515–519, doi: 10.1038/ngeo248.CrossRefGoogle Scholar
  5. Chao, W. C., and B. Chen, 2001: The origin of monsoons. J. Atmos. Sci., 58, 3497–3507.CrossRefGoogle Scholar
  6. Halley, E., 1686: An historical account of the trade winds, and monsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said winds. Philosophical Transactions (1683–1775), 16, 153–168.Google Scholar
  7. Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533, doi: 10.1175/1520-0469(1980)037<0515: NASCIA>2.0.CO;2.CrossRefGoogle Scholar
  8. Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. P. Pearce, Eds., Academic Press, London, 127–168.Google Scholar
  9. Held, I. M., M. F. Ting, and H. L. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 2125–2144, doi: 10.1175/1520-0442(2002)015<2125:NWSWTA> 2.0.CO;2.CrossRefGoogle Scholar
  10. Hoskins, B., 2014: Obituary: Professor Duzheng Ye, 1916–2013. Weather, 69, 82–83, doi: 10.1002/wea.2281.CrossRefGoogle Scholar
  11. Kaspi, Y., and T. Schneider, 2011: Winter cold of eastern continental boundaries induced by warm ocean waters. Nature, 471, 621–624, doi: 10.1038/nature09924.CrossRefGoogle Scholar
  12. Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 2416–2427, doi: 10.1175/1520-0469(1988)045<2416: HCFZAH>2.0.CO;2.CrossRefGoogle Scholar
  13. Lu, J. H., 2016: On “some fundamental problems of the general circulation of the atmosphere”. Chinese Journal of Atmospheric Sciences, 40, 78–85, doi: 10.3878/j.issn.1006-9895. 1505.15140. (in Chinese)Google Scholar
  14. Park, H.-S, J. C. H. Chiang, and S. Bordoni, 2012: The Mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian Monsoon. J. Climate, 25, 2394–2407, doi: 10.1175/JCLI-D-11-00281.1.CrossRefGoogle Scholar
  15. Phillips, N. A.}, 1956: The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Meteor. Soc., 82, 123–164, doi: 10.1002/qj.49708235202.CrossRefGoogle Scholar
  16. Plumb, R. A., and A. Y. Hou, 1992: The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. J. Atmos. Sci., 49, 1790–1799, doi: 10.1175/1520-0469(1992)049<1790:TROAZS>2.0.CO;2.CrossRefGoogle Scholar
  17. Prell, W. L., and J. E. Kutzbach, 1992: Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 647–652, doi: 10.1038/360647a0.CrossRefGoogle Scholar
  18. Privé, N. C., and R. A. Plumb, 2007a: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 1417–1430, doi: 10.1175/JAS3916.1.CrossRefGoogle Scholar
  19. Privé, N. C., and R. A. Plumb, 2007b: Monsoon dynamics with interactive forcing. Part II: Impact of eddies and asymmetric geometries. J. Atmos. Sci., 64, 1431–1442, doi: 10.1175/JAS3917.1.CrossRefGoogle Scholar
  20. Read, P. L., E. P. Pérez, I. M. Moroz, and R. M. B. Young, 2015: General circulation of planetary atmospheres. Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, T. von Larcher and P. D. Williams, Eds., John Wiley & Sons, Inc., 9–44, doi: 10.1002/9781118856024.ch1.Google Scholar
  21. Rossby, C.-G., 1951: Note on cooperative research projects. Tellus, 3, 212–216, http://dx.doi.org/10.1111/j.2153-3490.1951. tb00801.x.Google Scholar
  22. Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci., 34, 280–296, doi: 10.1175/1520-0469(1977)034<0280:ASSSMO>2.0.CO;2.CrossRefGoogle Scholar
  23. Schneider, T., 2006: The general circulation of the atmosphere. Annual Review of Earth and Planetary Sciences, 34, 655–688, doi: 10.1146/annurev.earth.34.031405.125144.CrossRefGoogle Scholar
  24. Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915–934.CrossRefGoogle Scholar
  25. Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi: 10.1029/2009RG000302.CrossRefGoogle Scholar
  26. Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the Intertropical Convergence Zone. Nature, 513, 45–53, doi: 10.1038/nature13636.CrossRefGoogle Scholar
  27. Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci., 71, 1724–1746, doi: 10.1175/JAS-D-13-0137.1.CrossRefGoogle Scholar
  28. Staff Members of the Section of Synoptic and Dynamic Meteorology, Institute of Geophysics and Meteorology, Academia Sinica, Peking, 1957: On the general circulation over eastern Asia (I). Tellus, 9, 432–446, http://dx.doi.org/10.1111/j.2153-3490.1957.tb01903.x.Google Scholar
  29. Staff Members of the Section of Synoptic and Dynamic Meteorology, Institute of Geophysics and Meteorology, Academia Sinica, 1958: On the general circulation over eastern Asia (II). Tellus, 10, 58–, http://dx.doi.org/10.1111/j.2153-3490. 1958.tb01985.x.Google Scholar
  30. Staff Members of the Section of Synoptic and Dynamic Meteorology, Institute of Geophysics and Meteorology, Academia Sinica, Peking, 1958: On the general circulation over eastern Asia (III). Tellus, 10, 299–312, http://dx.doi.org/10.1111/j.2153-3490.1958.tb02018.x.Google Scholar
  31. Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3 333–3 350, doi: 10.1175/JAS3821.1.Google Scholar
  32. Wu, G. X., W. P. Li, H. Guo, H. Liu, J. S. Xue, and Z. Z. Wang, 1997: Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian summer monsoon. Collections on the Memory of Zhao Jiuzhang, D. Z. Ye, Eds., Science Press. (in Chinese)Google Scholar
  33. Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi: 10.1038/srep00404.CrossRefGoogle Scholar
  34. Yeh, T.-C., 1949: On energy dispersion in the atmosphere. J. Atmos. Sci., 6, 1–16, doi: 10.1175/1520-0469(1949)006<0001: OEDITA>2.0.CO;2.Google Scholar
  35. Yeh, T.-C., and P.-C. Chu, 1958: Some Fundamental Problems of the General Circulation of the Atmosphere. Science Press, Beijing, 159 pp. (in Chinese)Google Scholar
  36. Yeh, T.-C., S.-Y. Dao, and M.-T. Li, 1959: The abrupt change of circulation over the Northern Hemisphere during June and October. The Atmosphere and the Sea in Motion. The Rossby Memorial Volume, B. Bolin, Ed., Rockefeller Institute Press, New York, 249–267.Google Scholar
  37. Zeng, Q. C., X. Z. Liang, and M. H. Zhang, 1988: Numerical simulation of monsoon and the abrupt changes in the atmospheric circulation. Chinese Journal of Atmospheric Sciences, 12(S1), 22–42, doi: 10.3878/j.issn.1006-9895.1988.t1.03. (in Chinese)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Atmospheric ScienceSun Yat-sen UniversityZhuhai, GuangdongChina
  2. 2.Department of Environmental Science and EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations